terclim by ICS banner
IVES 9 IVES Conference Series 9 Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Abstract

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence the soil water holding capacity, the vegetative growth and the vine water status. Moreover, it is known that the vine water status affects the grape quality, such as concentration and structural characteristics of phenols. In a relatively small area of the Vipava Valley, soil profiles were described on terraced and flat vineyards in the valley bottoms (n=5). Texture, pH, organic matter, available phosphorus, potassium and magnesium were determined for each soil horizon in the soil profile. Viticultural parameters (number of buds, clusters and leaf area) were standardised. Stem water potential (SWP) was measured during the growing season and grapes were randomly sampled during ripening in 2019. The content and structural characteristics of proanthocyanidins were determined in grape skins and seeds. On terraces, SWP was predominantly more negative than on flat vineyards, probably mainly due to the soil ability to retain water. Vineyards on flysch terrace soils consist of up to 90% coarse material and therefore contain less organic matter than the dense and largely non-skeletal loamy alluvial soils of flat vineyards. These two extreme groups of vineyards in the same vine-growing area differ considerably in morphology and soil profile characteristics, as well as microclimatic conditions and relief. The diversity of vineyards is reflected, among other things, in the grape quality. Higher concentration of anthocyanins in the skins and higher galloylation of seed proanthocyanidins was found in grapes from terraced vineyards. Understanding relationships between site, soil and the phenolic ripening of grapes is crucial for determining the best vineyard sites and thus for characterising terroirs suitable for high quality wines.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alenka Mihelčič1, Klemen Lisjak1, Andreja Vanzo1, Paolo Sivilotti2, Mario Čule3 and Borut Vrščaj1

1Department of Fruit Growing, Viticulture and Oenology and Department of Agricultural Ecology and Natural Resources Services, Agricultural Institute of Slovenia, Ljubljana, Slovenia
2Department of Agricultural, Environmental and Animal Science, University of Udine, Udine, Italy
3Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Bordeaux, France

Contact the author

Keywords

soil, flysch, skeleton, stem water potential, grape phenolic

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.