terclim by ICS banner
IVES 9 IVES Conference Series 9 Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Abstract

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence the soil water holding capacity, the vegetative growth and the vine water status. Moreover, it is known that the vine water status affects the grape quality, such as concentration and structural characteristics of phenols. In a relatively small area of the Vipava Valley, soil profiles were described on terraced and flat vineyards in the valley bottoms (n=5). Texture, pH, organic matter, available phosphorus, potassium and magnesium were determined for each soil horizon in the soil profile. Viticultural parameters (number of buds, clusters and leaf area) were standardised. Stem water potential (SWP) was measured during the growing season and grapes were randomly sampled during ripening in 2019. The content and structural characteristics of proanthocyanidins were determined in grape skins and seeds. On terraces, SWP was predominantly more negative than on flat vineyards, probably mainly due to the soil ability to retain water. Vineyards on flysch terrace soils consist of up to 90% coarse material and therefore contain less organic matter than the dense and largely non-skeletal loamy alluvial soils of flat vineyards. These two extreme groups of vineyards in the same vine-growing area differ considerably in morphology and soil profile characteristics, as well as microclimatic conditions and relief. The diversity of vineyards is reflected, among other things, in the grape quality. Higher concentration of anthocyanins in the skins and higher galloylation of seed proanthocyanidins was found in grapes from terraced vineyards. Understanding relationships between site, soil and the phenolic ripening of grapes is crucial for determining the best vineyard sites and thus for characterising terroirs suitable for high quality wines.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alenka Mihelčič1, Klemen Lisjak1, Andreja Vanzo1, Paolo Sivilotti2, Mario Čule3 and Borut Vrščaj1

1Department of Fruit Growing, Viticulture and Oenology and Department of Agricultural Ecology and Natural Resources Services, Agricultural Institute of Slovenia, Ljubljana, Slovenia
2Department of Agricultural, Environmental and Animal Science, University of Udine, Udine, Italy
3Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Bordeaux, France

Contact the author

Keywords

soil, flysch, skeleton, stem water potential, grape phenolic

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

It is not easy at first sight to give an exhaustive definition of the notion of terroir as it can be simplified or complicated at will. Thus the vagueness that surrounds this concept leaves the door open to various interpretations of the terroir. These tend towards a questionable level of objectivity because the fields they explore are not sufficient to explain the notion on their own, constituting only part of a whole.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).