terclim by ICS banner
IVES 9 IVES Conference Series 9 Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Abstract

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence the soil water holding capacity, the vegetative growth and the vine water status. Moreover, it is known that the vine water status affects the grape quality, such as concentration and structural characteristics of phenols. In a relatively small area of the Vipava Valley, soil profiles were described on terraced and flat vineyards in the valley bottoms (n=5). Texture, pH, organic matter, available phosphorus, potassium and magnesium were determined for each soil horizon in the soil profile. Viticultural parameters (number of buds, clusters and leaf area) were standardised. Stem water potential (SWP) was measured during the growing season and grapes were randomly sampled during ripening in 2019. The content and structural characteristics of proanthocyanidins were determined in grape skins and seeds. On terraces, SWP was predominantly more negative than on flat vineyards, probably mainly due to the soil ability to retain water. Vineyards on flysch terrace soils consist of up to 90% coarse material and therefore contain less organic matter than the dense and largely non-skeletal loamy alluvial soils of flat vineyards. These two extreme groups of vineyards in the same vine-growing area differ considerably in morphology and soil profile characteristics, as well as microclimatic conditions and relief. The diversity of vineyards is reflected, among other things, in the grape quality. Higher concentration of anthocyanins in the skins and higher galloylation of seed proanthocyanidins was found in grapes from terraced vineyards. Understanding relationships between site, soil and the phenolic ripening of grapes is crucial for determining the best vineyard sites and thus for characterising terroirs suitable for high quality wines.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alenka Mihelčič1, Klemen Lisjak1, Andreja Vanzo1, Paolo Sivilotti2, Mario Čule3 and Borut Vrščaj1

1Department of Fruit Growing, Viticulture and Oenology and Department of Agricultural Ecology and Natural Resources Services, Agricultural Institute of Slovenia, Ljubljana, Slovenia
2Department of Agricultural, Environmental and Animal Science, University of Udine, Udine, Italy
3Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Bordeaux, France

Contact the author

Keywords

soil, flysch, skeleton, stem water potential, grape phenolic

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).

Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Valbelluna valley is an area located in the northeastern Italy. It is extended from the East-West between Feltre and Belluno, along the Piave waterway and enclosed between Cansiglio valley on the South and the Dolomites in the North. Here, the villages of Limana and Trichiana are present, which are considered for decades potentially interesting areas to aim a niche production with own particular properties.The position of this area, its sun exposition, its soil composition and the microclimate, are ideal factors to obtain vines and consequently wines with unique features especially regarding the diversity and complexity aroma.

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...