terclim by ICS banner
IVES 9 IVES Conference Series 9 Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Abstract

In viticulture, the challenges of local climate modeling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation, and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Identification and monitoring of spatial thermal structures by unsupervised clustering method from land surface temperatures modelled at 500m using the topographical factors
Evaluation of the land surface temperature clustering method by statistical analysis based on topographical factors.

The first results have demonstrated the potential of the clustering method to identify thermal variations on a regional scale during the vegetative season between 2012 and 2018 without the need for ground climate data.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Gwenaël Morin1, Pierre-Gilles Lemasle2, Renan Le Roux and Hervé Quénol3 

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Rennes, France
2US 116 Agroclim, INRAE, Avignon, France

Contact the author

Keywords

climate modelling, thermal satellite, land surface temperature, regional scale, topographical variables

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Disentangling the sources of variation in stomatal regulation in field-grown cultivar-rootstock combinations

The inherent variability of Nature poses challenges for researchers to draw clear conclusions from field experiments. Identifying and assessing adaptations to climate change requires agronomic field trials.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).