terclim by ICS banner
IVES 9 IVES Conference Series 9 Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Abstract

In viticulture, the challenges of local climate modeling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation, and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Identification and monitoring of spatial thermal structures by unsupervised clustering method from land surface temperatures modelled at 500m using the topographical factors
Evaluation of the land surface temperature clustering method by statistical analysis based on topographical factors.

The first results have demonstrated the potential of the clustering method to identify thermal variations on a regional scale during the vegetative season between 2012 and 2018 without the need for ground climate data.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Gwenaël Morin1, Pierre-Gilles Lemasle2, Renan Le Roux and Hervé Quénol3 

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Rennes, France
2US 116 Agroclim, INRAE, Avignon, France

Contact the author

Keywords

climate modelling, thermal satellite, land surface temperature, regional scale, topographical variables

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Kegged wine as a sustainable alternative: impact on conservation and sensory quality

Wine is not just a beverage; it represents an entire ecosystem in winemaking regions and is deeply linked to economic, social, and environmental factors.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Health benefits of winemaking by-products: in vitro study of the phenolic profile and potential healthy properties

The wine sector plays a significant role in the international agri-food industry, with the winemaking process leading to the generation of considerable amounts of by-products. Among these by-products, grape pomace, is one of the most abundant resources, mainly finding application in the production of distillates, fertilizers, and animal feed.

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling