terclim by ICS banner
IVES 9 IVES Conference Series 9 Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

Abstract

In viticulture, the challenges of local climate modeling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation, and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Identification and monitoring of spatial thermal structures by unsupervised clustering method from land surface temperatures modelled at 500m using the topographical factors
Evaluation of the land surface temperature clustering method by statistical analysis based on topographical factors.

The first results have demonstrated the potential of the clustering method to identify thermal variations on a regional scale during the vegetative season between 2012 and 2018 without the need for ground climate data.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Gwenaël Morin1, Pierre-Gilles Lemasle2, Renan Le Roux and Hervé Quénol3 

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Rennes, France
2US 116 Agroclim, INRAE, Avignon, France

Contact the author

Keywords

climate modelling, thermal satellite, land surface temperature, regional scale, topographical variables

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.

Geopedological and climatic zoning of northern Malaga vineyards region: Fuente de Piedra, Humilladero and Mollina (southern Spain)

The vineyards placed in the municipal areas of Fuente de Piedra, Humilladero and Mollina constitute a wine-growing important area of the “Zona Norte” of the province of Málaga.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.