terclim by ICS banner
IVES 9 IVES Conference Series 9 Terclim 9 Terclim 2022 9 Session B - Oral presentations 9 Underpinning terroir with data: rethinking the zoning paradigm

Underpinning terroir with data: rethinking the zoning paradigm

Abstract

Terroir zoning has traditionally relied on a mixture of classical approaches to land classification and thematic mapping, coupled to various heuristics, ‘expert’ opinions and the whims of marketers and wine writers. Here, we show how, by using data-driven methods and focussing just on the land which supports grape production, rather than on all of the land within a winegrowing region, we might move towards a more robust terroir zoning. By using data to provide an improved understanding of terroir, such methods should also promote improved management of the entire wine value chain, offering quantitative indications of the impact of the biophysical characteristics of the places where grapes are grown on the chemical and sensory attributes of the wines derived from them.

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Rob Bramley¹, Jackie Ouzman¹, Brent Sams² and Mike Trought³

¹CSIRO, Waite Campus, Adelaide, Australia
²E&J Gallo Winery, Modesto, California, USA
³Innovative Winegrowing, Blenheim, New Zealand

Contact the author

Keywords

spatial analysis, precision viticulture, terroir zoning, sub-regionalisation

Tags

IVES Conference Series | Terclim 2022

Citation

You may be interested in…

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.