terclim by ICS banner
IVES 9 IVES Conference Series 9 Terclim 9 Terclim 2022 9 Session B - Oral presentations 9 Underpinning terroir with data: rethinking the zoning paradigm

Underpinning terroir with data: rethinking the zoning paradigm

Abstract

Terroir zoning has traditionally relied on a mixture of classical approaches to land classification and thematic mapping, coupled to various heuristics, ‘expert’ opinions and the whims of marketers and wine writers. Here, we show how, by using data-driven methods and focussing just on the land which supports grape production, rather than on all of the land within a winegrowing region, we might move towards a more robust terroir zoning. By using data to provide an improved understanding of terroir, such methods should also promote improved management of the entire wine value chain, offering quantitative indications of the impact of the biophysical characteristics of the places where grapes are grown on the chemical and sensory attributes of the wines derived from them.

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Rob Bramley¹, Jackie Ouzman¹, Brent Sams² and Mike Trought³

¹CSIRO, Waite Campus, Adelaide, Australia
²E&J Gallo Winery, Modesto, California, USA
³Innovative Winegrowing, Blenheim, New Zealand

Contact the author

Keywords

spatial analysis, precision viticulture, terroir zoning, sub-regionalisation

Tags

IVES Conference Series | Terclim 2022

Citation

You may be interested in…

Spatial determination of areas in the Western Balkans region favorable for organic production

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.