terclim by ICS banner
IVES 9 IVES Conference Series 9 VINIoT – Precision viticulture service

VINIoT – Precision viticulture service

Abstract

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Clara Gérardin3, Carole Feilhes3, Fanny Prezman3, Audrey Petit3, Ryad Bendoula1, Maxime Ryckewaert1,2, Nicolas Saurin4, Eric Serrano3 and Thierry Simonneau5

1ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2ChemHouse Research Group, Montpellier, France  
3IFV, Peyrole, France
4INRAE, Pech rouge, Gruissan, France
5UMR LEPSE, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

IoT, hyperspectral imaging, spectroscopy, spectral imaging, flavescence dorée, maturity, water stress

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

austrianvineyards.com: online viewer of all designations of Austrian wine

To digitally record and present all the origins of Austrian wines in the same perfect and clear way was the motivation for the Austrian Wine Marketing Board (Austrian Wine) to start with the project in 2018. In June 2021 the results were presented to the public in an online viewer showing all the designations of Austrian wine, available at https://austrianvineyards.com in a largely barrier-free manner. The online viewer provides tailored individual maps fitted to the respective zoom level. The smallest unit of wine-origins in Austria is called Ried and is displayed in a plot-specific manner highlighting areas under vine. Information on the Ried include administrative district, winegrowing municipality, cadastral municipality, large collective vineyard site, specific winegrowing region, generic winegrowing region, winegrowing area and, in many cases, an illustrative picture. Complementary data on the size, elevation (minimum-maximum), orientation (in 8 sectors plus flat) and gradient (minimum, maximum, average) are based on the area under vine according to the EU’s Integrated Administration and Control System. Additional information covers climate data. The diagrams are taken from the monthly breakdown of data in the annals of the Central Institute for Meteorology and Geodynamics, Austria provide a display of values for air temperature, precipitation, and sunshine hours for the reference year and the long-term average. Seasonal aggregated data on temperature, precipitation, and sunshine hours complete the display. Short descriptions with emphasis on geology and soil, field name in historical maps, etymology of the denomination, and main planted variety complements the available information for the main designations in the online viewer. These descriptions are compiled by winegrowers, geologists, historians, and journalists. All the information and data can be extracted to a pdf-file. Printed vineyard maps are also available. Missing content regarding wine origins in Styria will be completed in winter 2021/22.

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.

Comparing vineyard irrigation management based in two different approaches: vegetation indices and SIMDualKc model

Water scarcity, high air temperatures, high vapor pressure deficit, and increasing frequency and intensity of extreme climatic events, namely heat waves, exert huge pressure on viticulture, as is the case of Mediterranean climates. Therefore, farmers rely more and more on irrigation to overcome these constraints. Deficit irrigation is a proved strategy to optimize irrigation efficiency and wine quality. The present study intends to demonstrate the application of precision techniques, namely remote sensing derived vegetation indices (VI) and an open source software, SIMDualKc, to compute crop evapotranspiration using the dual crop coefficient approach (Kcb + Ke), for deficit irrigation management.