terclim by ICS banner
IVES 9 IVES Conference Series 9 A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Abstract

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system.  Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Àngela Puig-Sirera, Pasquale Giorio, Angelo Basile, Antonello Bonfante, Maurizio Buonanno, Roberto De Mascellis, Arturo Erbaggio, Piero Manna, Eugenia Monaco and Rossella Albrizio

Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council – CNR – ISAFOM, Italy 

Contact the author

Keywords

multidisciplinary approach, training systems, vineyards, wine quality, yield

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Analyse climatique à l’échelle des Coteaux du Layon

Les études d’impact du climat sur la vigne nécessite de descendre à des échelles très fines car les facteurs climatiques sont tributaires de la topographie, la végétation, les expositions … Dans le cadre du programme ANR-JC Terviclim, 22 capteurs ont été installés dans les vignobles des Coteaux du Layon afin de caractériser le climat particulier de ces terroirs. L’analyse des températures montre de fortes disparités entre les data loggers et pourtant situés parfois sur les mêmes parcelles ou sur des parcelles voisines. Les indices bioclimatiques tels les degrés jours sont également contrastés suivant la situation des capteurs sur les coteaux.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

Les AOC : un frein ou un moteur à l’innovation ? Retour sur l’histoire économique, scientifique, sociale et technique des vins d’appellation au XXe siècle en France

At a time when the world’s winegrowing industry is having to adapt to a number of challenges, winegrowers are wondering about the consequent changes they will have to make (grape varieties, changes in vineyard and cellar techniques). For winegrowers and consumers alike, there is also the question of how these changes will affect the taste of their wines. This research, based on the study of numerous sources and archives from the 20th century, some of which have never been published before, aims to show that, in the recent past, the winegrowing world has shown incredible resilience in the face of crises, and that the taste and perception of fine wines has changed considerably in 100 years.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.