terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate projections over France wine-growing region and its potential impact on phenology

Climate projections over France wine-growing region and its potential impact on phenology

Abstract

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sébastien Zito1,2, Louis Delelee2, Thierry Castel1, Yves Richard1 and Benjamin Bois1,2

1Centre de Recherches de Climatologie, UMR 6282 Biogéosciences, CNRS/Univ Bourgogne Franche-Comté, France
2Institut Universitaire de la Vigne et du Vin, Université Bourgogne Franche Comté, Dijon, France

Contact the author

Keywords

climate change, phenology, France, grapevine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

“Vinhos de mesa” et oenophilie : quand les caractéristiques organoleptiques des cépages américains empêchent l’intégration des consommateurs à l’univers de l’appréciation esthétique

Au Brésil, 80 % du vignoble national et 90 % du vignoble de l’État du Rio Grande do Sul (principale région productrice de vins dans le pays) sont plantés avec des cépages issus de vitis labrusca ou de cépages hybrides (DEBASTIANI, 2015). Une partie de cette production est utilisée pour la préparation de jus de raisin et de concentrés de moût ou de pulpe de raisin. Le restant est consacré à

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.