terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate projections over France wine-growing region and its potential impact on phenology

Climate projections over France wine-growing region and its potential impact on phenology

Abstract

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sébastien Zito1,2, Louis Delelee2, Thierry Castel1, Yves Richard1 and Benjamin Bois1,2

1Centre de Recherches de Climatologie, UMR 6282 Biogéosciences, CNRS/Univ Bourgogne Franche-Comté, France
2Institut Universitaire de la Vigne et du Vin, Université Bourgogne Franche Comté, Dijon, France

Contact the author

Keywords

climate change, phenology, France, grapevine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Effects of different crop load and pruning aplications on vi̇ne growing, grape yi̇eld and quality parameters of early sweet (Vitis vinifera L.) grape variety

It is important to examine the yield quality elements of table grape varieties. There are great differences in winter and summer pruning of the early sweet grape variety. For this reason, in the study, the effects of different crop loads and pruning processes on grape yield, quality characteristics and vine development in the early sweet (vitis vinifera L.) Grape variety were investigated.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.