terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Abstract

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Yvette Wohlfahrt1, Katja Krüger2, Susanne Tittmann1 and Manfred Stoll1

1Hochschule Geisenheim University, Department of General and Organic Viticulture, Geisenheim, Germany
2University of Applied Sciences Erfurt, Erfurt Research Centre for Horticultural Crops (FGK), Erfurt, Germany

Contact the author

Keywords

leaf morphology, Vitis vinifera, carbon dioxide, FACE

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Tolerance to sunburn: a variable to consider in the context of climate change

Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Vino e paesaggio: materiali per il governo del territorio vitivinicolo. Il piano regolatore delle città del vino

S’intende per Piano Regolatore delle Città del Vino la metodologia per redigere la parte strutturale dello strumento comunale di governo del territorio. Parliamo, infatti, del principale strumento comunale di governo del territorio, così come è venuto maturando nella riflessione delle Città del Vino, strumento che si misura con la sfida di governare tutto il territorio in modo coerente e sostenibile, a partire dal riconoscimento del valore del “sistema vigneto” e della sua intrinseca fragilità.