terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Abstract

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Yvette Wohlfahrt1, Katja Krüger2, Susanne Tittmann1 and Manfred Stoll1

1Hochschule Geisenheim University, Department of General and Organic Viticulture, Geisenheim, Germany
2University of Applied Sciences Erfurt, Erfurt Research Centre for Horticultural Crops (FGK), Erfurt, Germany

Contact the author

Keywords

leaf morphology, Vitis vinifera, carbon dioxide, FACE

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*.

Comparative studies on the dynamics of fermentation of selected wine yeasts

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.