IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

Abstract

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3]. The aim of the present study is to make an estimation of the nature of these changes by using a standard volatile composition added to different real wine matrices and then analyze the headspace above them.The analytical methodology is based on a previously developed DHS-TD-GC-MS method [4]. This analytical method provides a snapshot of the contents in wine vapors and allows a better understanding of the headspace profile changes. To study the influence of the wine matrix on the release of volatile compounds, the non-volatile matrix from six different wines was isolated and all volatile compounds removed. The non-volatile matrices were used to reconstitute the six original wines but this time the volatile composition was a standard aroma solution (15 volatile compounds of different chemical families) and the same alcoholic content. The headspaces of the reconstituted wines and a model wine (12% vol. ethanol, pH 3.5) were analyzed and compared at two different moments: just after wine pouring (t=0 min) and after 10 min with glass shaking (t=10 min). The analyses were triplicated for each model wine. Also, free and total sulfur dioxide, total polyphenol index, total acidity, pH, dry mass and contents on copper, iron and zinc were determined for each wine matrix.The data collected was studied according to the time spent after wine pouring, as this factor substantially modifies the headspace of most volatile compounds. The results of a one-way ANOVA to assess the influence of the wine matrix on the initial headspace composition showed significant differences for all compounds except ethyl decanoate. Dimethyl sulfide presented marked differences among wines matrices and a significant linear anti-correlation with the copper content of the matrices. Esters showed a similar trend in the release across wine matrices, although one wine was consistently releasing lower contents of ethyl esters. Butyric and hexanoic acids were the compounds with more marked differences in release, although other compounds like β-damascenone also displayed significant differences according to the wine matrix. The variation on the release of more polar and heavier compounds, like linalool, 4-ethylphenol or vanillin in the studied matrices was more similar to that of the model wine. Only in the matrix of a young red wine a salting-out effect was detected. The data obtained in this work proves that the same volatile composition in the liquid phase of very dissimilar non-volatile wine matrices produces a headspace profile above the wines that can be significantly different and, therefore, can undoubtedly influence the perception of wine aroma.

References

[1] D.-M. Jung, S.E. Ebeler, Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds, (2003) 6.
[2] M.-P. Sáenz-Navajas, E. Campo, L. Culleré, P. Fernández-Zurbano, D. Valentin, V. Ferreira, Effects of the Nonvolatile Matrix on the Aroma Perception of Wine, J. Agric. Food Chem. 58 (2010) 5574–5585. https://doi.org/10.1021/jf904377p.
[3] J.J. Rodríguez-Bencomo, C. Muñoz-González, I. Andújar-Ortiz, P.J. Martín-Álvarez, M.V. Moreno-Arribas, M.Á. Pozo-Bayón, Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis, J. Sci. Food Agric. 91 (2011) 2484–2494. https://doi.org/10.1002/jsfa.4494.
[4] Y. Wen, R. Lopez, V. Ferreira, An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine, J. Chromatogr. A. 1534 (2018) 130–138. https://doi.org/10.1016/j.chroma.2017.12.064.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lopez Ricardo¹, Wen Yan¹and Ferreira Vicente¹

¹Laboratory for Aroma Analysis and Enology, Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza

Contact the author

Keywords

headspace, aroma release, flavor-matrix interactions, wine, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

Vine responses to two irrigation systems in the region of Vinhos Verdes

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.