terclim by ICS banner
IVES 9 IVES Conference Series 9 Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Abstract

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation.  Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sébastien Nicolas1, Benjamin Bois2, Kévin Billet1, Mourad Harir3, Marianna Lucio3, Olivier Mathieu2, Anne-Lise Santoni2, Roy Urvieta4, Fernando Buscema4, Héloise Mahé5, Christine Monamy5, Sébastien Debuisson6, Julie Perry6, Fernando Alves7, Agnes Destrac8, Olivier Yobregat9, Laurent Audeguin10, Manfred Stoll11, Jean-Yves Cahurel12, Florian Haas13, Marianne Henner14, Philippe Schmitt-kopplin3 and Régis D. Gougeon1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, Dijon, France
2Biogéosciences UMR 6282 CNRS/Univ Bourgogne Franche Comté – Institut Universitaire de la Vigne et du Vin, 21000 Dijon, France
3Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
4Catena Institute of Wine, Bodega Catena Zapata, Mendoza, Argentina
5Bureau Interprofessionnel des Vins de Bourgogne, Centre Interprofessionnel Technique, Beaune, France
6CIVC, Comité interprofessionnel du vin de Champagne, Epernay, France
7Symington,  Vila Nova de Gaia, Portugal
8EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
9Institut Français de la Vigne et du Vin Pôle Sud-Ouest, V’innopôle, Lisle Sur Tarn, France
10Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, Le Grau du Roi, France
11Institut für Weinbau und Rebenzüchtung, Fachgebiet Weinbau, Forschungsanstalt Geisenheim, Geisenheim, Germany
12Institut Français de la Vigne et du Vin, Pôle Bourgogne – Beaujolais – Jura – Savoie, Villefranche/Saône cedex, France
13Laimburg Research Centre, Ora, Italy
14Chambre d’agriculture Alsace, Sainte-croix-en-plaine, France

Contact the author

Keywords

 climate change, water stress, mass spectrometry, untargeted metabolomics, Pinot noir, Chardonnay

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).