terclim by ICS banner
IVES 9 IVES Conference Series 9 Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Abstract

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation.  Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sébastien Nicolas1, Benjamin Bois2, Kévin Billet1, Mourad Harir3, Marianna Lucio3, Olivier Mathieu2, Anne-Lise Santoni2, Roy Urvieta4, Fernando Buscema4, Héloise Mahé5, Christine Monamy5, Sébastien Debuisson6, Julie Perry6, Fernando Alves7, Agnes Destrac8, Olivier Yobregat9, Laurent Audeguin10, Manfred Stoll11, Jean-Yves Cahurel12, Florian Haas13, Marianne Henner14, Philippe Schmitt-kopplin3 and Régis D. Gougeon1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, Dijon, France
2Biogéosciences UMR 6282 CNRS/Univ Bourgogne Franche Comté – Institut Universitaire de la Vigne et du Vin, 21000 Dijon, France
3Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
4Catena Institute of Wine, Bodega Catena Zapata, Mendoza, Argentina
5Bureau Interprofessionnel des Vins de Bourgogne, Centre Interprofessionnel Technique, Beaune, France
6CIVC, Comité interprofessionnel du vin de Champagne, Epernay, France
7Symington,  Vila Nova de Gaia, Portugal
8EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
9Institut Français de la Vigne et du Vin Pôle Sud-Ouest, V’innopôle, Lisle Sur Tarn, France
10Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, Le Grau du Roi, France
11Institut für Weinbau und Rebenzüchtung, Fachgebiet Weinbau, Forschungsanstalt Geisenheim, Geisenheim, Germany
12Institut Français de la Vigne et du Vin, Pôle Bourgogne – Beaujolais – Jura – Savoie, Villefranche/Saône cedex, France
13Laimburg Research Centre, Ora, Italy
14Chambre d’agriculture Alsace, Sainte-croix-en-plaine, France

Contact the author

Keywords

 climate change, water stress, mass spectrometry, untargeted metabolomics, Pinot noir, Chardonnay

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.