terclim by ICS banner
IVES 9 IVES Conference Series 9 Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Abstract

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation.  Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Sébastien Nicolas1, Benjamin Bois2, Kévin Billet1, Mourad Harir3, Marianna Lucio3, Olivier Mathieu2, Anne-Lise Santoni2, Roy Urvieta4, Fernando Buscema4, Héloise Mahé5, Christine Monamy5, Sébastien Debuisson6, Julie Perry6, Fernando Alves7, Agnes Destrac8, Olivier Yobregat9, Laurent Audeguin10, Manfred Stoll11, Jean-Yves Cahurel12, Florian Haas13, Marianne Henner14, Philippe Schmitt-kopplin3 and Régis D. Gougeon1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, Dijon, France
2Biogéosciences UMR 6282 CNRS/Univ Bourgogne Franche Comté – Institut Universitaire de la Vigne et du Vin, 21000 Dijon, France
3Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
4Catena Institute of Wine, Bodega Catena Zapata, Mendoza, Argentina
5Bureau Interprofessionnel des Vins de Bourgogne, Centre Interprofessionnel Technique, Beaune, France
6CIVC, Comité interprofessionnel du vin de Champagne, Epernay, France
7Symington,  Vila Nova de Gaia, Portugal
8EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
9Institut Français de la Vigne et du Vin Pôle Sud-Ouest, V’innopôle, Lisle Sur Tarn, France
10Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, Le Grau du Roi, France
11Institut für Weinbau und Rebenzüchtung, Fachgebiet Weinbau, Forschungsanstalt Geisenheim, Geisenheim, Germany
12Institut Français de la Vigne et du Vin, Pôle Bourgogne – Beaujolais – Jura – Savoie, Villefranche/Saône cedex, France
13Laimburg Research Centre, Ora, Italy
14Chambre d’agriculture Alsace, Sainte-croix-en-plaine, France

Contact the author

Keywords

 climate change, water stress, mass spectrometry, untargeted metabolomics, Pinot noir, Chardonnay

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.