Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards


The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg. Ability to fix applied K also varied, decreasing from 0.350 in the shale-, to 0.188 in the sandstone- to -0.177 cmol/kg in the granite-derived soils. Potential buffering capacity for K was pH / liming dependent, particularly in the shale soils. Potassium uptake by Italian rye grass correlated negatively with K fixation. The K contents of Italian rye grass grown on the sandstone, shale and granite soils were, respectively, 2.32, 2.12 and 5.56 dry mass %. These results were explicable in terms of soil mineralogy. The presence of kaolinite in the clay fraction, with mica and K-rich feldspar cores in the silt fraction enabled the granite soils to release primary K, but conferred little power to fix, or to buffer K against luxury uptake or loss through leaching. In contrast, the shale soil clay fractions consistently contained vermiculite and interstratified 2:1 minerals. These conferred marked pH / liming dependent K buffer capabilities. The shale soils also contained K in micas in the non-clay fractions. The sandstone soils varied in terms of both mineralogy and clay content. Sandstone soils, in which the sand fractions were quartzitic were unable to deliver primary K. Similarly, sandstone soils having low clay contents had severely limited K buffering capabilities. The observed differences in the abilities of sandstone-, shale- and granite-derived soils to supply and buffer K may be sufficient to affect grape vine performance and wine quality in Western Cape vineyards.


Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article


J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author


Clay, buffer capacity, granite, mineral, potassium, sandstone, shale, soil, vineyard, wine


IVES Conference Series | Terroir 2004


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.