terclim by ICS banner
IVES 9 IVES Conference Series 9 Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Abstract

Wine-growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climates will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Laurent J. Lamarque1,2, Chloé E.L. Delmas3, Guillaume Charrier4, Régis Burlett1, Ninon Dell’acqua3, Jérôme Pouzoulet5, Gregory A. Gambetta5 and Sylvain Delzon1

1Université de Bordeaux, INRAE, BIOGECO, Pessac, France
2Département des Sciences de l’Environnement, Université du Québec, Trois-Rivières, Québec, Canada
3SAVE, INRAE, BSA, ISVV, Villenave d’Ornon, France
4INRAE, PIAF, Université Clermont Auvergne, Clermont-Ferrand, France
5EGFV, Univ. Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

drought, Vitis, hydraulics, P50, regions at risk, ontogeny

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Proposal of a procedure for sensory characterisation of wines from different subareas of a same D.O.C. (V.Q.P.R.D.)

In the course of the present work, which is the first part of a study on the “characterization of Barbera dell’Oltrepo Pavese D.O.C.” 30 wines Barbera from 1993 vintage have been compared only regarding their sensory characteristics. An unstructured scale card, composed by 15 descriptors have been used.

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.