terclim by ICS banner
IVES 9 IVES Conference Series 9 Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Abstract

Wine-growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climates will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Laurent J. Lamarque1,2, Chloé E.L. Delmas3, Guillaume Charrier4, Régis Burlett1, Ninon Dell’acqua3, Jérôme Pouzoulet5, Gregory A. Gambetta5 and Sylvain Delzon1

1Université de Bordeaux, INRAE, BIOGECO, Pessac, France
2Département des Sciences de l’Environnement, Université du Québec, Trois-Rivières, Québec, Canada
3SAVE, INRAE, BSA, ISVV, Villenave d’Ornon, France
4INRAE, PIAF, Université Clermont Auvergne, Clermont-Ferrand, France
5EGFV, Univ. Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

drought, Vitis, hydraulics, P50, regions at risk, ontogeny

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges.

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.