terclim by ICS banner
IVES 9 IVES Conference Series 9 Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Abstract

Wine-growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climates will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Laurent J. Lamarque1,2, Chloé E.L. Delmas3, Guillaume Charrier4, Régis Burlett1, Ninon Dell’acqua3, Jérôme Pouzoulet5, Gregory A. Gambetta5 and Sylvain Delzon1

1Université de Bordeaux, INRAE, BIOGECO, Pessac, France
2Département des Sciences de l’Environnement, Université du Québec, Trois-Rivières, Québec, Canada
3SAVE, INRAE, BSA, ISVV, Villenave d’Ornon, France
4INRAE, PIAF, Université Clermont Auvergne, Clermont-Ferrand, France
5EGFV, Univ. Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

drought, Vitis, hydraulics, P50, regions at risk, ontogeny

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

What happens with the glutathione during winemaking and the storage of the wine?

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H).

Integration of wine cultivation history for characterizing the terroirs of Côte d’Or (Burgundy, France)

Les aires d’appellations de la Côte d’Or résultent d’une sélection humaine empirique, historique et évolutive en adéquation avec les facteurs naturels. Afin de comprendre quels facteurs naturels et humains agissent sur le caractère et l’évolution des terroirs des Côtes de Nuits et de Beaune, une méthodologie de recherche a été développée. Elle s’articule autour de deux axes, la caractérisation physique des lieux-dits viticoles et l’historicité de la qualité de ces lieux-dits. Le travail avec un S.I.G permet d’étudier l’évolution spatiale et temporelle de la qualité.