terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Abstract

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares are under vines, mostly of Monastrell variety and certified organic. The main objective of this study is the analysis of the viticultural climate during the period 1980-2020 to assess the trends and the current impact of climate change on this wine-growing region where wine making represents the most important economic activity. For this purpose, temperature and precipitation data series from 74 weather stations located in the area has been analysed, grouped in intervals of 5, 10 and 20 years. 26 variables, including climatic bioclimatic indexes, growing season length, frost free period length, overlaps among them, and the indexes involved in the Geoviticulture MCC System have been calculated for each weather station and interval. Data from the last 20 years has been employed to propose a climate zoning of the PDO Jumilla following the methodology used by Gómez-Miguel and Sotés (1992-2019) in viticultural zonings carried out in Spain and Portugal, while previous data has been used to assess the climate trends. The results show the increase in minimum, mean, and maximum temperatures, the advancement of sprouting, and the increase of spring frosts risk in all the analysed weather stations, as well as changes in the viticultural climate in all the defined zones. The registered average increases in mean temperature, between 0.3 and 0.5 ºC per decade during the studied period, draw a concerning scenario that demands implementation of combined actions for the adaptation of the sector in this historical wine region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Joaquín Cámara1, Carolina Martínez2 and Vicente Gómez-Miguel3

1Diagnoterra, SL, Madrid, Spain
2Consejo Regulador de la Denominación de Origen Protegida “Jumilla”, Jumilla, Spain
3Department of Crop Science, Universidad Politécnica de Madrid, Madrid, Spain

Contact the author

Keywords

climate change, climate zoning, PDO Jumilla, geoviticulture MCC system, climate trends

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region.

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Possible toxicological risk arising from contamination of grapes and derivatives by emerging mycotoxins: patulin

Following the acquired awareness of the presence of ochratoxin A in grape derivatives, actions were undertaken to contain this contamination, and attempts were made to evaluate the presence of any other molecule belonging to this class.