terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Abstract

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares are under vines, mostly of Monastrell variety and certified organic. The main objective of this study is the analysis of the viticultural climate during the period 1980-2020 to assess the trends and the current impact of climate change on this wine-growing region where wine making represents the most important economic activity. For this purpose, temperature and precipitation data series from 74 weather stations located in the area has been analysed, grouped in intervals of 5, 10 and 20 years. 26 variables, including climatic bioclimatic indexes, growing season length, frost free period length, overlaps among them, and the indexes involved in the Geoviticulture MCC System have been calculated for each weather station and interval. Data from the last 20 years has been employed to propose a climate zoning of the PDO Jumilla following the methodology used by Gómez-Miguel and Sotés (1992-2019) in viticultural zonings carried out in Spain and Portugal, while previous data has been used to assess the climate trends. The results show the increase in minimum, mean, and maximum temperatures, the advancement of sprouting, and the increase of spring frosts risk in all the analysed weather stations, as well as changes in the viticultural climate in all the defined zones. The registered average increases in mean temperature, between 0.3 and 0.5 ºC per decade during the studied period, draw a concerning scenario that demands implementation of combined actions for the adaptation of the sector in this historical wine region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Joaquín Cámara1, Carolina Martínez2 and Vicente Gómez-Miguel3

1Diagnoterra, SL, Madrid, Spain
2Consejo Regulador de la Denominación de Origen Protegida “Jumilla”, Jumilla, Spain
3Department of Crop Science, Universidad Politécnica de Madrid, Madrid, Spain

Contact the author

Keywords

climate change, climate zoning, PDO Jumilla, geoviticulture MCC system, climate trends

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3