terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Abstract

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares are under vines, mostly of Monastrell variety and certified organic. The main objective of this study is the analysis of the viticultural climate during the period 1980-2020 to assess the trends and the current impact of climate change on this wine-growing region where wine making represents the most important economic activity. For this purpose, temperature and precipitation data series from 74 weather stations located in the area has been analysed, grouped in intervals of 5, 10 and 20 years. 26 variables, including climatic bioclimatic indexes, growing season length, frost free period length, overlaps among them, and the indexes involved in the Geoviticulture MCC System have been calculated for each weather station and interval. Data from the last 20 years has been employed to propose a climate zoning of the PDO Jumilla following the methodology used by Gómez-Miguel and Sotés (1992-2019) in viticultural zonings carried out in Spain and Portugal, while previous data has been used to assess the climate trends. The results show the increase in minimum, mean, and maximum temperatures, the advancement of sprouting, and the increase of spring frosts risk in all the analysed weather stations, as well as changes in the viticultural climate in all the defined zones. The registered average increases in mean temperature, between 0.3 and 0.5 ºC per decade during the studied period, draw a concerning scenario that demands implementation of combined actions for the adaptation of the sector in this historical wine region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Joaquín Cámara1, Carolina Martínez2 and Vicente Gómez-Miguel3

1Diagnoterra, SL, Madrid, Spain
2Consejo Regulador de la Denominación de Origen Protegida “Jumilla”, Jumilla, Spain
3Department of Crop Science, Universidad Politécnica de Madrid, Madrid, Spain

Contact the author

Keywords

climate change, climate zoning, PDO Jumilla, geoviticulture MCC system, climate trends

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Longevity and moderate wine consumption – can guidelines provide practical advice?

Conflicting messages about the consumption of alcoholic beverages – including wine – continue to dominate the media, causing increasing uncertainty among consumers and health professionals.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].