terclim by ICS banner
IVES 9 IVES Conference Series 9 Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Abstract

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Marta Arrizabalaga-Arriazu1,2, Eric Gomès2, Fermín Morales3, Juan José Irigoyen1, Inmaculada Pascual1 and Ghislaine Hilbert2

1Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
2EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
3Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain

Contact the author

Keywords

climate change, Tempranillo, temperature, CO2, water deficit, anthocyanin profile

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Permanent vs temporary cover crops in a Sangiovese vineyard: preliminary results on vine physiology and productive traits

Cover crops in vineyards have been extensively studied, as the choice of grass species and their management significantly influence soil properties and vine performance.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.