terclim by ICS banner
IVES 9 IVES Conference Series 9 Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Abstract

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Marta Arrizabalaga-Arriazu1,2, Eric Gomès2, Fermín Morales3, Juan José Irigoyen1, Inmaculada Pascual1 and Ghislaine Hilbert2

1Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
2EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
3Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain

Contact the author

Keywords

climate change, Tempranillo, temperature, CO2, water deficit, anthocyanin profile

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Reusable system for wine bottles: An analysis of acceptance among German wine consumers

Consumer demands for environmentally friendly products, including wine, are constantly increasing.

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry).

SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.