terclim by ICS banner
IVES 9 IVES Conference Series 9 Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Abstract

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Marta Arrizabalaga-Arriazu1,2, Eric Gomès2, Fermín Morales3, Juan José Irigoyen1, Inmaculada Pascual1 and Ghislaine Hilbert2

1Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
2EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
3Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain

Contact the author

Keywords

climate change, Tempranillo, temperature, CO2, water deficit, anthocyanin profile

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life

Use of satellite in precision viticulture: the Franciacorta experience

Today, the concept of precision vine management (or site-specific viticulture) has a great relevance. It is based on the practice of a different management in relation to the different features of the crop site. In this way, all practices should be adapted to the land spatial variability and should be linked to the real needs of vines.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.