terclim by ICS banner
IVES 9 IVES Conference Series 9 Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Abstract

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Marta Arrizabalaga-Arriazu1,2, Eric Gomès2, Fermín Morales3, Juan José Irigoyen1, Inmaculada Pascual1 and Ghislaine Hilbert2

1Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza), University of Navarra, Pamplona, Spain
2EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
3Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain

Contact the author

Keywords

climate change, Tempranillo, temperature, CO2, water deficit, anthocyanin profile

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Algae protein: fining agent for white wine, sustainable, non-allergenic and animal-free

The development of non-animal and non-allergenic alternatives to traditional protein fining agents used in winemaking is of critical importance in order to ensure consumer safety and production sustainability. This study evaluates the effect of protein extracted from three types of algae (spirulina, chlorella vulgaris and tetraselmis chuii) as fining agents on the polymeric proanthocyanidin content responsible for astringency, as well as their effect on the colour, phenolic composition and volatile aroma of two white wines (a and b).

Approche méthodologique concernant une caractérisation sensorielle de vins rouges de l’Anjou

Face à une concurrence de plus en plus rude entre pays producteurs, le vignoble de l’Anjou, déjà riche par sa diversité, souhaite renforcer sa logique de vins d’ A.O.C., notamment au travers de ses vins rouges.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.