terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of graft quality on growth and grapevine-water relations

Effects of graft quality on growth and grapevine-water relations

Abstract

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L. (traditional cultivars for wine production) onto North American grapevine species or hybrids is routinely used in most grape growing areas accounting for about the 80% of vineyards globally. Grapevine grafting started at the end of the 19th century to combat phylloxera (Daktulosphaira vitifoliae), since many of the American Vitis species are tolerant to this soil born pest. Decline of vineyard longevity might be partially explained by a decline in grafting quality in the nurseries. Omega grafting stands out as the most popular grafting method given its higher success rate in nurseries. However, the high pace of the grafting production leads to a poor-quality union of the graft point, with a smaller contact surface and presumably a worse connection area, compromising the phloem and xylem formation. Thus, we hypothesized that performing an omega graft of higher or lower technical quality could have implications on grapevine physiology, especially in terms of water relations. We identified two levels of technical quality: CA, completely aligned scion and rootstock cuttings where the scion and the cane had the same diameter and PA, partially aligned scion and rootstock cuttings where the scion and rootstock had different diameters. Results showed that CA plants had a higher rate of vegetative growth and higher gas exchange performance in terms of transpiration and canopy stomatal conductance. These trends were not explained by increased hydraulic conductivity at the scion level, thus, results suggested an effect of the grafting quality on the phloem formation. Therefore, this study highlights the relevance of exploring the effect of the grafting quality on the grapevine water relations to identify how the changes in plant performance could help on achieving resilient plants to water stress or drought.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Diana Marín1,2, Nazareth Torres1,2, Silvina Dayer3, Ana Villa-Llop1, Francisco Javier Abad1,4, Gregory A. Gambetta1, José M. Torres-Ruiz5 and Luis Gonzaga Santesteban1,2

1Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Pamplona, Spain
2Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Pamplona, Spain
3EGFV, Univ. Bordeaux Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
4INTIA, Edificio de Peritos Avda. Villava, Spain
5Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France

 

Contact the author

Keywords

gas exchange, hydraulic conductivity, leaf area, omega grafting, water status

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.