terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of graft quality on growth and grapevine-water relations

Effects of graft quality on growth and grapevine-water relations

Abstract

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L. (traditional cultivars for wine production) onto North American grapevine species or hybrids is routinely used in most grape growing areas accounting for about the 80% of vineyards globally. Grapevine grafting started at the end of the 19th century to combat phylloxera (Daktulosphaira vitifoliae), since many of the American Vitis species are tolerant to this soil born pest. Decline of vineyard longevity might be partially explained by a decline in grafting quality in the nurseries. Omega grafting stands out as the most popular grafting method given its higher success rate in nurseries. However, the high pace of the grafting production leads to a poor-quality union of the graft point, with a smaller contact surface and presumably a worse connection area, compromising the phloem and xylem formation. Thus, we hypothesized that performing an omega graft of higher or lower technical quality could have implications on grapevine physiology, especially in terms of water relations. We identified two levels of technical quality: CA, completely aligned scion and rootstock cuttings where the scion and the cane had the same diameter and PA, partially aligned scion and rootstock cuttings where the scion and rootstock had different diameters. Results showed that CA plants had a higher rate of vegetative growth and higher gas exchange performance in terms of transpiration and canopy stomatal conductance. These trends were not explained by increased hydraulic conductivity at the scion level, thus, results suggested an effect of the grafting quality on the phloem formation. Therefore, this study highlights the relevance of exploring the effect of the grafting quality on the grapevine water relations to identify how the changes in plant performance could help on achieving resilient plants to water stress or drought.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Diana Marín1,2, Nazareth Torres1,2, Silvina Dayer3, Ana Villa-Llop1, Francisco Javier Abad1,4, Gregory A. Gambetta1, José M. Torres-Ruiz5 and Luis Gonzaga Santesteban1,2

1Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Pamplona, Spain
2Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Pamplona, Spain
3EGFV, Univ. Bordeaux Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
4INTIA, Edificio de Peritos Avda. Villava, Spain
5Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France

 

Contact the author

Keywords

gas exchange, hydraulic conductivity, leaf area, omega grafting, water status

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir.

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.