terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of graft quality on growth and grapevine-water relations

Effects of graft quality on growth and grapevine-water relations

Abstract

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L. (traditional cultivars for wine production) onto North American grapevine species or hybrids is routinely used in most grape growing areas accounting for about the 80% of vineyards globally. Grapevine grafting started at the end of the 19th century to combat phylloxera (Daktulosphaira vitifoliae), since many of the American Vitis species are tolerant to this soil born pest. Decline of vineyard longevity might be partially explained by a decline in grafting quality in the nurseries. Omega grafting stands out as the most popular grafting method given its higher success rate in nurseries. However, the high pace of the grafting production leads to a poor-quality union of the graft point, with a smaller contact surface and presumably a worse connection area, compromising the phloem and xylem formation. Thus, we hypothesized that performing an omega graft of higher or lower technical quality could have implications on grapevine physiology, especially in terms of water relations. We identified two levels of technical quality: CA, completely aligned scion and rootstock cuttings where the scion and the cane had the same diameter and PA, partially aligned scion and rootstock cuttings where the scion and rootstock had different diameters. Results showed that CA plants had a higher rate of vegetative growth and higher gas exchange performance in terms of transpiration and canopy stomatal conductance. These trends were not explained by increased hydraulic conductivity at the scion level, thus, results suggested an effect of the grafting quality on the phloem formation. Therefore, this study highlights the relevance of exploring the effect of the grafting quality on the grapevine water relations to identify how the changes in plant performance could help on achieving resilient plants to water stress or drought.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Diana Marín1,2, Nazareth Torres1,2, Silvina Dayer3, Ana Villa-Llop1, Francisco Javier Abad1,4, Gregory A. Gambetta1, José M. Torres-Ruiz5 and Luis Gonzaga Santesteban1,2

1Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Pamplona, Spain
2Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Pamplona, Spain
3EGFV, Univ. Bordeaux Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
4INTIA, Edificio de Peritos Avda. Villava, Spain
5Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France

 

Contact the author

Keywords

gas exchange, hydraulic conductivity, leaf area, omega grafting, water status

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Previous work from our laboratory has shown that both a purified toasted oak powder and extracts made from unoaked and oaked red wines influenced physiological parameters, metabolism and hepatic gene expression in high-fat fed C57/BL6J male mice (Luo et al., 2020).  Impacted pathways included glucose metabolism, liver fat accumulation, markers of chronic inflammation, and expression of the Gsta1 mRNA.  

Zoning influence in chromatic parameters in Monastrell grape

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.