terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate and the evolving mix of grape varieties in Australia’s wine regions

Climate and the evolving mix of grape varieties in Australia’s wine regions

Abstract

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Kym Anderson1, Gregory Jones2, German Puga3 and Richard Smart4

1,3Wine Economics Research Centre, University of Adelaide, Adelaide SA, Australia
2Abacela Vineyards and Winery, Roseburg OR, United States
3Centre for Global Food and Resources, University of Adelaide, Adelaide SA, Australia
4Smart Viticulture, Greenvale Vic, Australia

Contact the author

Keywords

adaptation to climate change, Australia’s viticulture, climatic classifications, winegrape varieties

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Représentation holistique d’une dynamique pluridisciplinaire suite à la cartographie des sols en Beaujolais

Une démarche de cartographie des sols a été engagée en 2009 par l’interprofession des vins du Beaujolais à l’initiative des professionnels de la région. A fin 2015

Thermal risk assessment for viticulture using monthly temperature data

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon