terclim by ICS banner
IVES 9 IVES Conference Series 9 The rootstock, the neglected player in the scion transpiration even during the night

The rootstock, the neglected player in the scion transpiration even during the night

Abstract

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

David Bianchi1,2, Bruno Baricelli1, Gregory Gambetta1, Nathalie Ollat1, and Elisa Marguerit1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy

Contact the author

Keywords

nocturnal transpiration, vapour pressure deficit, water deficit, plasticity, grapevine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Multidisciplinary assessment of selective harvesting in the Colli Piacentini wine district

Within-field variability can be managed through Precision Viticulture (PV) protocols aiming at identifying homogeneous zones and addressing site-specific operations including selective harvesting (SH). Several authors demonstrated SH profitability in extensive viticulture while few information is available within the Italian context.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.