terclim by ICS banner
IVES 9 IVES Conference Series 9 Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Abstract

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

António Graça1 and Mark Gishen2

1Sogrape Vinhos S.A., Porto, Portugal 
2Gishen Consulting, Adelaide, Australia

Contact the author

Keywords

CCAF, climate, adaptation, resilience, risk

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

CropManage online decision support tool for irrigation scheduling of vineyards

CropManage (CM) is an online decision support service (DSS) developed by the University of California, Division of Agriculture and Natural Resources for assisting farmers with efficiently managing water and nitrogen fertilizer to match the site-specific needs of their crops.

A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

Until the 19th century, the wild form of cultivated grapevines (vitis vinifera l. subsp. sylvestris gmelin, v. sylvestris) was ubiquitous in many european and west asian regions. However, many factors like deforestation, the intensification of agriculture, or the introduction of several pests and pathogens decimated its presence in these growing sites, and natural populations are now mostly restricted to river-bank forests and creeks with specific soil and climate conditions. in fact, v. sylvestris is now considered an endangered subspecies that is protected by law in many european countries to prevent its loss.

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.