terclim by ICS banner
IVES 9 IVES Conference Series 9 The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

Abstract

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages  and different climatic conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Serena Fantasia1, Matteo Mota1, Frédéric Lamy1, David Marchand2, Robin Sonnard2, Vivian Zufferey3, Nicolas Delabays4, Thierry Heger1 and Markus Rienth1

1Changins, Institute of Viticulture and Œnology, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
2FIBL, Research Institute of Organic Agriculture, Lausanne, Switzerland
3Agroscope, Swiss Agricultural Research Institute, Nyon, Switzerland
4hepia, Earth-Nature-Environment Institute, University of Applied Sciences and Arts of Western Switzerland, Jussy, Switzerland

Contact the author

Keywords

biodiversity, cover crops, soil quality, sustainable viticulture, weed management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Rare earth elements in grapes and soil: study of different soil extraction methods

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines.