terclim by ICS banner
IVES 9 IVES Conference Series 9 The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

Abstract

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages  and different climatic conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Serena Fantasia1, Matteo Mota1, Frédéric Lamy1, David Marchand2, Robin Sonnard2, Vivian Zufferey3, Nicolas Delabays4, Thierry Heger1 and Markus Rienth1

1Changins, Institute of Viticulture and Œnology, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
2FIBL, Research Institute of Organic Agriculture, Lausanne, Switzerland
3Agroscope, Swiss Agricultural Research Institute, Nyon, Switzerland
4hepia, Earth-Nature-Environment Institute, University of Applied Sciences and Arts of Western Switzerland, Jussy, Switzerland

Contact the author

Keywords

biodiversity, cover crops, soil quality, sustainable viticulture, weed management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The aim of this study is to provide an overview of the terroir of Saint-Romain, Burgundy, based on three main information sources: official data relating to vines (CVI), soil cartography and a survey of winegrowers’ practices.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

Interacción mesoclima-suelo en la calidad del vino de Cabernet-Sauvignon en las denominaciones de origen Priorato y Tarragona

Las condiciones heliotérmicas en España son en general favorables a alcanzar una elevada producción de azúcares en las bayas de prácticamente todas las variedades que se cultivan en nuestro país.

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.