terclim by ICS banner
IVES 9 IVES Conference Series 9 The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

Abstract

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Manuel J.R.A. Oliveira1,2,3, Marta W. Vasconcelos1, Ana Monforte1, Óscar Moutinho4, Ricardo Mendes4, António Ferreira1, Assunta Bertaccini5 and  Susana M.P. Carvalho2

1Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina –Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
2GreenUPorto – Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Vairão, Portugal
3CoLAB Vines&Wines – National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do Vinho, Vila Real, Portugal
4Eye2Map – Soluções Geográficas para Ambiente e Engenharia, UPTEC Polo do Mar, Leça da Palmeira, Portugal
5Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy

Contact the author

Keywords

grapevine, photosynthetic rate, red edge, remote sensing, sustainable viticulture

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.