terclim by ICS banner
IVES 9 IVES Conference Series 9 Aromatic maturity is a cornerstone of terroir expression in red wine

Aromatic maturity is a cornerstone of terroir expression in red wine

Abstract

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cornelis van Leeuwen1, Jean-Christophe Barbe2, Philippe Darriet2, Agnès Destrac-Irvine1, Marc Gowdy1, Georgia Lytra2, Axel Marchal2, Stéphanie Marchand2, Marc Plantevin2, Xavier Poitou3, Alexandre Pons2,4, Gilles de Revel2 and Cécile Thib

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, ISVV, Villenave d’Ornon France
3Jas Hennessy, Cognac, France
4Tonnellerie Seguin-Moreau, Cognac, France

Contact the author

Keywords

Vitis vinifera, grapevine, maturity, aroma, terroir

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin.

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.