terclim by ICS banner
IVES 9 IVES Conference Series 9 Aromatic maturity is a cornerstone of terroir expression in red wine

Aromatic maturity is a cornerstone of terroir expression in red wine

Abstract

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cornelis van Leeuwen1, Jean-Christophe Barbe2, Philippe Darriet2, Agnès Destrac-Irvine1, Marc Gowdy1, Georgia Lytra2, Axel Marchal2, Stéphanie Marchand2, Marc Plantevin2, Xavier Poitou3, Alexandre Pons2,4, Gilles de Revel2 and Cécile Thib

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, ISVV, Villenave d’Ornon France
3Jas Hennessy, Cognac, France
4Tonnellerie Seguin-Moreau, Cognac, France

Contact the author

Keywords

Vitis vinifera, grapevine, maturity, aroma, terroir

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

Mapping grape composition in the field using VIS/SWIR hyperspectral cameras mounted on a UTV

Assessing grape composition is critical in vineyard management. It is required to decide the harvest date and to optimize cultural practices toward the achievement of production goals. The grape composition is variable in time and space, as it is affected by the ripening process and depends on soil and climate conditions.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.