OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Abstract

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively. 

From the results of extraction methods, we applied the chosen methods and further combined the HTS tools of metabarcoding and metagenomics, to characterise how microbial communities of those samples, and their subsequent spontaneously fermented derivatives, vary. We specifically explored microbial community variation related to vineyard level, and during alcoholic fermentation. The vineyard was shown to be strongly influencing the microbial communities. Functional analyses were additionally included to investigate the microbial interactions. An increase in non-Saccharomycetaceae fungal functions and a decrease in bacterial functions were also observed during the early fermentation stage. Overall, our results highlight the importance of standardizing DNA extraction methods when characterising fungal diversity from wine and related samples, and showcase how metagenomic functional analysis offer possibilities to improve our insights into the wine alcoholic fermentation process, including highlighting microbe interactions.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sarah Siu Tze Mak, Kimmo Sirén, Christian Carøe, Ulrich Fischer, M. Thomas P. Gilbert 

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 
Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt an der Weinstraße, Germany 

Contact the author

Keywords

Riesling, Metabarcoding, Metagenomics, DNA extraction

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Interacción mesoclima-suelo en la calidad del vino de Cabernet-Sauvignon en las denominaciones de origen Priorato y Tarragona

Las condiciones heliotérmicas en España son en general favorables a alcanzar una elevada producción de azúcares en las bayas de prácticamente todas las variedades que se cultivan en nuestro país.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area.

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.