terclim by ICS banner
IVES 9 IVES Conference Series 9 A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

Abstract

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Girault Gnanguenon Guesse1, Patrice Loisel1, Bénedicte Fontez1, Nadine Hilgert1 and Thierry Simonneau2

1MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
2LEPSE, Université Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

machine learning, anthocyanin, temperature, irradiance, SpiceFP

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Socioeconomic impact of the LIFE Climawin project from the perspective of employees

This study examines, from the perspective of the employees at Bosque de Matasnos—a demonstrative winery participating in the LIFE Climawin project—the socioeconomic impact and potential contributions of the initiative to the wine sector and the sustainable development of the Ribera del Duero region in Spain.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Биотехнология в системе оздоровления и размножения комплексно-устойчивых сортов винограда на Юге России

The production of certified grape planting material is one of the most important problems in the Russian federation. According to the scheme for the production of healthy grape planting material, before being introduced into in vitro culture, the source plants of each variety (Moldova, Augustin, Bart) were individually assessed for typical varietal characteristics and the presence/absence of symptoms of infection by pests.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.