terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

Abstract

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

A. Sergio Serrano Parra1,2, Cristina Cebrián-Tarancón2, Jesús Martínez Gascueña1, Juan Luis Chacón Vozmediano1 and Gonzalo L. Alonso2

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Tomelloso, Ciudad Real, Spain
2Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Albacete, Spain

Contact the author

Keywords

varietal aroma potential index, phenolic potential, water stress, carbon isotope ratio, oxygen isotope ratio

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.