terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

Abstract

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

A. Sergio Serrano Parra1,2, Cristina Cebrián-Tarancón2, Jesús Martínez Gascueña1, Juan Luis Chacón Vozmediano1 and Gonzalo L. Alonso2

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Tomelloso, Ciudad Real, Spain
2Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Albacete, Spain

Contact the author

Keywords

varietal aroma potential index, phenolic potential, water stress, carbon isotope ratio, oxygen isotope ratio

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici.