IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New C-glucosidic ellagitannin-derived spirit compounds: Identification, quantitation and sensory contribution

New C-glucosidic ellagitannin-derived spirit compounds: Identification, quantitation and sensory contribution

Abstract

Ellagitannins consist the main extractible phenolic compounds in oak wood. They can be extracted during eaux-de-vie aging in barrels and rapidly undergo chemical transformations, such as hydrolysis, reduction, oxidation, or even substitution reactions. Given gaps in knowledge about their composition in spirits, the goal of this work was to explore ellagitannin behavior during Cognac eaux-de-vie aging and search for new C-glucosidic ellagitannin-derived compounds. A purification protocol was established in order to isolate the new formed compounds. UPLC-UV-Q-ToF and NMR spectroscopy were used to characterize a new C-glucosidic ellagitannin, named brandy tannin B. This compound was isolated from Cognac eaux-de-vie for the first time and was quantified in old aged eaux-de-vie and commercial Cognacs.

A triangular test was carried out to explore the incidence of this newly identified compound. Other oxidation compounds derived from ellagitannins, the known whiskey tannins A and B, were also identified for the first time in Cognac eaux-de-vie. It was shown that whiskey tannins A and B presented two isomeric forms. The four whiskey tannins were quantified in this matrix and followed the same trend as the brandy tannins. Both b-1-O-ethylvescalagin and b-1-O-ethylvescalin were also identified for the first time in Cognac, and their development in this matrix was also studied in order to better understand the formation of brandy tannin B. In addition, the organoleptic impact of brandy tannin B was evaluated. This work brings new insights into ellagitannin composition and their contribution to spirit quality.

DOI:

June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chira Kleopatra¹, Capello Yoan¹, Emo Catherine¹, Lavergne Joël¹, Quideau Stéphanie², Jourdes Michaël¹ and Teissèdre Pierre-Louis¹

¹Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon
²Univ. Bordeaux, ISM (UMR-CNRS 5255)

Contact the author

Keywords

Brandy tannin B, C-glucosidic ellagitannin-derived, spirit compounds, eau-de-vie, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ellagitannin profile of red and white wines aged with oak chips

Wine aging with oak chips is nowadays a common alternative to barrel aging, aiming to improve wine quality through the fast extraction of wood derived compounds. From the pool of wood phenols, ellagitannins have been reported to have the most significant impact on the wine’s organoleptic profile. Their final concentration in wines is influenced by several factors, with toasting level considered as one of the most important.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.