IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New C-glucosidic ellagitannin-derived spirit compounds: Identification, quantitation and sensory contribution

New C-glucosidic ellagitannin-derived spirit compounds: Identification, quantitation and sensory contribution

Abstract

Ellagitannins consist the main extractible phenolic compounds in oak wood. They can be extracted during eaux-de-vie aging in barrels and rapidly undergo chemical transformations, such as hydrolysis, reduction, oxidation, or even substitution reactions. Given gaps in knowledge about their composition in spirits, the goal of this work was to explore ellagitannin behavior during Cognac eaux-de-vie aging and search for new C-glucosidic ellagitannin-derived compounds. A purification protocol was established in order to isolate the new formed compounds. UPLC-UV-Q-ToF and NMR spectroscopy were used to characterize a new C-glucosidic ellagitannin, named brandy tannin B. This compound was isolated from Cognac eaux-de-vie for the first time and was quantified in old aged eaux-de-vie and commercial Cognacs.

A triangular test was carried out to explore the incidence of this newly identified compound. Other oxidation compounds derived from ellagitannins, the known whiskey tannins A and B, were also identified for the first time in Cognac eaux-de-vie. It was shown that whiskey tannins A and B presented two isomeric forms. The four whiskey tannins were quantified in this matrix and followed the same trend as the brandy tannins. Both b-1-O-ethylvescalagin and b-1-O-ethylvescalin were also identified for the first time in Cognac, and their development in this matrix was also studied in order to better understand the formation of brandy tannin B. In addition, the organoleptic impact of brandy tannin B was evaluated. This work brings new insights into ellagitannin composition and their contribution to spirit quality.

DOI:

June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Chira Kleopatra¹, Capello Yoan¹, Emo Catherine¹, Lavergne Joël¹, Quideau Stéphanie², Jourdes Michaël¹ and Teissèdre Pierre-Louis¹

¹Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon
²Univ. Bordeaux, ISM (UMR-CNRS 5255)

Contact the author

Keywords

Brandy tannin B, C-glucosidic ellagitannin-derived, spirit compounds, eau-de-vie, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023).

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Metschnikowia pulcherrima: A valuable microbial bioresource from wine for smart agrifood

The yeast Metschnikowia pulcherrima is a microorganism of great biotechnological interest, both for improving winemaking processes and for other applications outside the wine supply chain.

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies.