IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Abstract

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.  We explored the impact of an apiculate yeast Hanseniaspora occidentalis strain as a co-partner with Saccharomyces cerevisiae in a sequential-type mixed-culture fermentation of Muscaris grape must.  Like with other fermentation trials using Hanseniaspora strains, a significant increase in ethyl acetate was observed, but most intriguing, was the almost complete abolition of malic acid in the wine.  Compared to the pure S. cerevisiae inoculum there was also a marked increase in the concentrations of the other acetate esters. Modulation of some of the varietal elements like rose oxide was also observed.  Identifying and confirming the genes involved in malic acid utilization and aroma formation would require the development of gene modification tools: a feature not existing yet in H. occidentalis. We have recently developed gene-modifying tools in Hanseniaspora uvarum where we knocked-out the two alleles of the alcohol acetyltransferase gene (HuATF) resulting in a yeast with much lower acetate ester capabilities. This was the first successful attempt to genetically remove a gene from Hanseniaspora and paves the way for further gene-to-function studies in this apiculate yeast
genus

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyk Niel¹, Badura Jennifer¹, Scansani Stefano¹,³, Pretorius Isak S.², Rauhut Doris1, Von Wallbrunn Christian¹

¹Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
²ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, Australia
³Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany

Contact the author

Keywords

Hanseniaspora, GMO, malic acid

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.