IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

Abstract

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

References

1) Denat, M., Ontañón, I., Querol, A. & Ferreira, V. (2022). The diverse effects of yeast on the aroma of non-sulfite added white wines throughout aging. LWT, 113111.
(2) Denat, Marie, Pérez, D., Heras, J. M., Querol, A. & Ferreira, V. (2021). The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 9(100116), 1–10.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Denat Marie¹, Querol Amparo² and Ferreira Vicente¹

 ¹Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA)
²Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain

Contact the author

Keywords

varietal aroma, PFMs, glycosidic precursors, Saccharomyces, aroma longevity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...