IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

Abstract

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

References

1) Denat, M., Ontañón, I., Querol, A. & Ferreira, V. (2022). The diverse effects of yeast on the aroma of non-sulfite added white wines throughout aging. LWT, 113111.
(2) Denat, Marie, Pérez, D., Heras, J. M., Querol, A. & Ferreira, V. (2021). The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 9(100116), 1–10.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Denat Marie¹, Querol Amparo² and Ferreira Vicente¹

 ¹Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA)
²Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain

Contact the author

Keywords

varietal aroma, PFMs, glycosidic precursors, Saccharomyces, aroma longevity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

The vine and the hazelnut as elements of characterization of a terroir

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy).

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.