IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

Abstract

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

References

1) Denat, M., Ontañón, I., Querol, A. & Ferreira, V. (2022). The diverse effects of yeast on the aroma of non-sulfite added white wines throughout aging. LWT, 113111.
(2) Denat, Marie, Pérez, D., Heras, J. M., Querol, A. & Ferreira, V. (2021). The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 9(100116), 1–10.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Denat Marie¹, Querol Amparo² and Ferreira Vicente¹

 ¹Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA)
²Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain

Contact the author

Keywords

varietal aroma, PFMs, glycosidic precursors, Saccharomyces, aroma longevity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Green Vineyards: skills development for wine industry personnel: responding to the challenges of climate change

A fair and sustainable society, with a modern, resource-efficient and competitive economy cannot be achieved without a workforce to support it.

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

The relationship of wine store customers with the areas of production, considering provenance and tourism

This work aims at identifying the most appropriate marketing strategies to inform consumers of the global market about the added value of the wines of Friuli Venezia Giulia.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.