IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Abstract

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line, or that few oenological parameters are considered. To our knowledge, a system which incorporates a more comprehensive mathematical model as well as in-line spectroscopic monitoring for the purpose of precision oenology has not yet been presented.

The use of first principle mathematical modelling was employed to predict the trends of alcoholic fermentation and oenological parameters in a four-phase model based on initial conditions. The components of interest were sugars, alcohol, biomass, nitrogen, carbon dioxide, phenolic parameters, and pH. The phases considered included the lees, the cap, the must, and an intermediate liquid phase present in the cap. For each phase, a system of ordinary differential equations was developed to describe the change of each of the components listed. Parameters such as mass transfer coefficients and partition coefficients need to be determined via regression during the model development stage. To obtain the necessary data, fermentations using three different cultivars (Shiraz, Merlot, and Cabernet Sauvignon) were conducted using three different temperatures (20oC, 25oC, and 28oC). Samples were taken once per day and chemical analysis took place for each of the components. A functional mathematical model capable of generating accurate forecasts for different oenological components using the chemical composition of grapes was attempted. Additionally, the model should describe the change in parameters due to cap mixing and increasing ethanol concentration. The model includes the boundary conditions which can be used to determine if a fermentation is deviating from desired progression.

To complete this process control system, it is still necessary to utilize partial least squares (PLS) calibration models for real time monitoring. Additionally, outlier identification, caused by abnormal spectra, was performed using statistical analysis allowing samples to be re-analysed. The use of machine learning techniques and the development of local and incremental models was explored to assess a live updating of the PLS models. The expected outcome of this study is a combined system using dynamic modelling to predict the fermentation and extraction trends and the monitoring with real time predictions generated by PLS models

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Lambrecht Kiera Nareece¹, Du Toit Prof. W.J.¹, Louw Prof. T.M.²and Aleixandre Tudo Dr. J.L.¹,³

¹Stellenbosch University, South African Grape and Wine Research Institute, Department of Viticulture and Oenology
²Stellenbosch University, Department of Process Engineering
³Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos

Contact the author

Keywords

In-line monitoring, process control, dynamic modelling, chemometrics, live modelling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Paysages viticoles et terroir dans l’OAC Ribeira Sacra (Galice, NO de l’Espagne)

The concept of Appellation d’Origine Contrôlée (AOC) is based on the existence of a link between the characteristics of the terroir and the quality and typicality of the production (DELAS, 2000). If for a long time, this link only appeared as the fruit of empiricism, the research undertaken recently has made it possible to scientifically establish the complex relationships between the functioning of natural environments and the ability to produce quality.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.