IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Abstract

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line, or that few oenological parameters are considered. To our knowledge, a system which incorporates a more comprehensive mathematical model as well as in-line spectroscopic monitoring for the purpose of precision oenology has not yet been presented.

The use of first principle mathematical modelling was employed to predict the trends of alcoholic fermentation and oenological parameters in a four-phase model based on initial conditions. The components of interest were sugars, alcohol, biomass, nitrogen, carbon dioxide, phenolic parameters, and pH. The phases considered included the lees, the cap, the must, and an intermediate liquid phase present in the cap. For each phase, a system of ordinary differential equations was developed to describe the change of each of the components listed. Parameters such as mass transfer coefficients and partition coefficients need to be determined via regression during the model development stage. To obtain the necessary data, fermentations using three different cultivars (Shiraz, Merlot, and Cabernet Sauvignon) were conducted using three different temperatures (20oC, 25oC, and 28oC). Samples were taken once per day and chemical analysis took place for each of the components. A functional mathematical model capable of generating accurate forecasts for different oenological components using the chemical composition of grapes was attempted. Additionally, the model should describe the change in parameters due to cap mixing and increasing ethanol concentration. The model includes the boundary conditions which can be used to determine if a fermentation is deviating from desired progression.

To complete this process control system, it is still necessary to utilize partial least squares (PLS) calibration models for real time monitoring. Additionally, outlier identification, caused by abnormal spectra, was performed using statistical analysis allowing samples to be re-analysed. The use of machine learning techniques and the development of local and incremental models was explored to assess a live updating of the PLS models. The expected outcome of this study is a combined system using dynamic modelling to predict the fermentation and extraction trends and the monitoring with real time predictions generated by PLS models

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Lambrecht Kiera Nareece¹, Du Toit Prof. W.J.¹, Louw Prof. T.M.²and Aleixandre Tudo Dr. J.L.¹,³

¹Stellenbosch University, South African Grape and Wine Research Institute, Department of Viticulture and Oenology
²Stellenbosch University, Department of Process Engineering
³Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos

Contact the author

Keywords

In-line monitoring, process control, dynamic modelling, chemometrics, live modelling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Grapes composition is a factor well known to affect wines composition and sensory expression. The goal of this study was to evaluate how grapes composition modifications linked to maturity level could affect wines aromatic expression and esters composition.

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

Successful training on responsible wine consumption in Germany

Considering that „prevention requires information”, in 2007, the european education program wine in moderation (wim) started. The common message of responsible and only moderate wine consumption is implemented in each participating country, adapted to national circumstances. In germany, besides recruiting new wim members from the wine sector, the deutsche weinakademie focusses also on information and education of future wine makers and cellar men in professional schools. The seminars cover basic information about the existing legal framework (youth protecting law, drink driving laws, etc.), the self regulation code of conduct for commercial communications (advertising) of alcoholic beverages as well as the health effects of alcoholic beverages, and of wine in particular.