IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Abstract

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line, or that few oenological parameters are considered. To our knowledge, a system which incorporates a more comprehensive mathematical model as well as in-line spectroscopic monitoring for the purpose of precision oenology has not yet been presented.

The use of first principle mathematical modelling was employed to predict the trends of alcoholic fermentation and oenological parameters in a four-phase model based on initial conditions. The components of interest were sugars, alcohol, biomass, nitrogen, carbon dioxide, phenolic parameters, and pH. The phases considered included the lees, the cap, the must, and an intermediate liquid phase present in the cap. For each phase, a system of ordinary differential equations was developed to describe the change of each of the components listed. Parameters such as mass transfer coefficients and partition coefficients need to be determined via regression during the model development stage. To obtain the necessary data, fermentations using three different cultivars (Shiraz, Merlot, and Cabernet Sauvignon) were conducted using three different temperatures (20oC, 25oC, and 28oC). Samples were taken once per day and chemical analysis took place for each of the components. A functional mathematical model capable of generating accurate forecasts for different oenological components using the chemical composition of grapes was attempted. Additionally, the model should describe the change in parameters due to cap mixing and increasing ethanol concentration. The model includes the boundary conditions which can be used to determine if a fermentation is deviating from desired progression.

To complete this process control system, it is still necessary to utilize partial least squares (PLS) calibration models for real time monitoring. Additionally, outlier identification, caused by abnormal spectra, was performed using statistical analysis allowing samples to be re-analysed. The use of machine learning techniques and the development of local and incremental models was explored to assess a live updating of the PLS models. The expected outcome of this study is a combined system using dynamic modelling to predict the fermentation and extraction trends and the monitoring with real time predictions generated by PLS models

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Lambrecht Kiera Nareece¹, Du Toit Prof. W.J.¹, Louw Prof. T.M.²and Aleixandre Tudo Dr. J.L.¹,³

¹Stellenbosch University, South African Grape and Wine Research Institute, Department of Viticulture and Oenology
²Stellenbosch University, Department of Process Engineering
³Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos

Contact the author

Keywords

In-line monitoring, process control, dynamic modelling, chemometrics, live modelling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The history of the first demarkated wine region of the world – the Tokaj wine region

The optimal climatic conditions of the region were proved in 1867, when a leaf-print of Vitis tokaiensis was found in a stone from miocen age (13 million years ago).

Methyljasmonate versus nanomethyljasmonate: effect on monastrell nitrogen composition

The aim of this work was to evaluate the effect of preharvest application in Monastrell berries using two different types of applications: conventional treatments

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Evaluation of climate change impacts at the Portuguese Dão terroir over the last decades: observed effects on bioclimatic indices and grapevine phenology

In the last decades the growers of the Portuguese Dão winegrowing region (center of Portugal) are experiencing changes in climate that are influencing either grape phenology berry health and ripening. Aiming to study the relationships between climate indices (CI), seasonal weather and grapevine phenology, in this work long-term climate and phenological data collected at the experimental vineyard of the Portuguese Dão research centre between 1958 and 2019 (61 years) for the red variety Touriga Nacional, was analyzed. The trends over time for the classical temperature-based indices (Growing Season Temperature – GST -, Growing Degree Days – GDD, Huglin Index – HI and Cool Night Index – CI) presented a significantly positive slope while the Dryness Index (DI) showed a negative trend over the last 61 years. Regarding grapevine phenology, an average advance of 4.5 days per decade in the harvest day was observed throughout the last 61 years. Consequently, the weather conditions during the ripening period have changed, showing an increasing trend over time in the average temperature (higher magnitude in the maximum than in the minimum temperature) and a decrease in the accumulated rainfall. A regression analysis showed that ~50% of harvest date variability over years was explained by the temperature-based indices variability. These observed effects of climate change on bioclimatic indices and corresponding anticipation of harvest date can still be considered advantageous for the Dão terroir as it allows to achieve an optimal berry ripening before the common equinox rains and, therefore, avoid the potential negative impacts of the rainfall on berry health and composition.