IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Abstract

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line, or that few oenological parameters are considered. To our knowledge, a system which incorporates a more comprehensive mathematical model as well as in-line spectroscopic monitoring for the purpose of precision oenology has not yet been presented.

The use of first principle mathematical modelling was employed to predict the trends of alcoholic fermentation and oenological parameters in a four-phase model based on initial conditions. The components of interest were sugars, alcohol, biomass, nitrogen, carbon dioxide, phenolic parameters, and pH. The phases considered included the lees, the cap, the must, and an intermediate liquid phase present in the cap. For each phase, a system of ordinary differential equations was developed to describe the change of each of the components listed. Parameters such as mass transfer coefficients and partition coefficients need to be determined via regression during the model development stage. To obtain the necessary data, fermentations using three different cultivars (Shiraz, Merlot, and Cabernet Sauvignon) were conducted using three different temperatures (20oC, 25oC, and 28oC). Samples were taken once per day and chemical analysis took place for each of the components. A functional mathematical model capable of generating accurate forecasts for different oenological components using the chemical composition of grapes was attempted. Additionally, the model should describe the change in parameters due to cap mixing and increasing ethanol concentration. The model includes the boundary conditions which can be used to determine if a fermentation is deviating from desired progression.

To complete this process control system, it is still necessary to utilize partial least squares (PLS) calibration models for real time monitoring. Additionally, outlier identification, caused by abnormal spectra, was performed using statistical analysis allowing samples to be re-analysed. The use of machine learning techniques and the development of local and incremental models was explored to assess a live updating of the PLS models. The expected outcome of this study is a combined system using dynamic modelling to predict the fermentation and extraction trends and the monitoring with real time predictions generated by PLS models

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Lambrecht Kiera Nareece¹, Du Toit Prof. W.J.¹, Louw Prof. T.M.²and Aleixandre Tudo Dr. J.L.¹,³

¹Stellenbosch University, South African Grape and Wine Research Institute, Department of Viticulture and Oenology
²Stellenbosch University, Department of Process Engineering
³Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos

Contact the author

Keywords

In-line monitoring, process control, dynamic modelling, chemometrics, live modelling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.