IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Abstract

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses. The aim of the study was to test the ability of two nondestructive analyses, directly on grapes, hyperspectral imaging (HSI) and Raman spectroscopy to assess their composition.
For that, 7 grape varieties were analyzed for 2 vintages. Each grape was characterized by its technological ripening (levels of sugars, organic acids and pH) and its phenolic ripeness (total phenolic, total flavonoids, total anthocyanins contents, as well as extractable phenolic, extractable flavonoids, extractable anthocyanins, values obtained from a model wine maceration from skins, and color intensity). Spectra were recorded on 100 and 40 fresh berries per date and variety respectively with hyperspectral imaging and Raman. Raw data underwent different pretreatments (SNV, 1st and 2nd derivative) and PLS-R were then realized in order to provide models to assess grape composition.
The results showed that the 1st derivative data pretreatment generated better models and was then kept for all following analyses. Both methods, Raman spectroscopy and hyperspectral imaging, showed good ability to assess technological ripening parameters (sugar and acid contents) as well as phenolic content (TPI, Total Phenolics, Total Anthocyanins, Total Flavonoids and their extractable equivalents) (with globally R² > 0.81). However, it was not possible to reach the color intensity of grapes.
Even if both methods have the potential to assess wine grape quality on 11 important parameters, the quality of the models generated in our study was dependent on the quality parameter, the type of grapes (color) and the method, except for fructose, TSS and Extractable Anthocyanin contents, which were equivalent. Thus, the glucose concentration and the Total Phenolic Index (TPI) were better assessed by Raman spectroscopy, whereas Extractable Phenolics content was better estimated by HSI for both white and red grapes as well as Total  Anthocyanin content. Tartaric acid, Total Flavonoids, Color Intensity and extractable Flavonoids were better assessed by HSI for red grapes but by Raman for white grapes.
The quality of the generated models was yet dependent on the color of grapes and the parameter considered. More data would be necessary to strengthen the models but the proof of concept was successful with this study

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Maury Chantal¹, Gabrielli Mario², Ounaissi Daoud¹, Lançon-Verdier Vanessa¹, Julien Séverine¹and Le Meurlay Dominique ¹

¹USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207 QUASAV
²Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore

Contact the author

Keywords

wine grape, hyperspectral imaging, Raman spectroscopy, phenolics, composition

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

Visualization of wine origin, quality level and terroir by the landscape

The communication of the aims of a viticulture under the premise of terroir is presently discussed in a lot of wine-growing regions around the world. To encourage this discussion the differences in knowledge, understanding, and preference concerning wine and landscape should be regarded more closely: the wine should be perceived as a representative of its region and one of the most characteristic features of a region is the landscape.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.