IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Abstract

Monoterpenes are important aroma compounds in white wines. Many monoterpenes are chiral and the chiral forms have different aroma qualities. Rose oxide is an important chiral compound found in Gewuztraminer wines. The enantiomers of the chiral rose oxide are found to vary in wines. The difference sin the enantiomeric ratios have the potential to alter wine aroma, as well as change aroma qualitities when in combination with other monoterpenes. The aim of this study was to evaluate rose oxide enantiomers at different ratios and the interaction of rose oxide with linalool and alpha-terpineol. Twelve compound combinations were tested in a dearomatized wine with diffferent ratios of rose oxide and combinations with linalool and alpha-terpineol. Triangle tests, check-all-that-apply (CATA) and descriptive analysis were used to evaluate the aroma of the wine treatments. Results show that the ratio of rose oxide enantiomers did alter aroma. Additionally, descriptive analysis showed that the rose oxide enantiomer ratios altered aroma when linalool and alpha-terpineol were at low and medium concentrations, influenceing grapefruit, lychee and stone fruit aromas. At high concentrations, linalool and alpha-terpineol mask rose oxide, resulting in wines described as tropical fruit, ginger, rose and honeysuckle. Understanding how monoterpenes alter aroma perception of white wines when at different combinations and concentrations is important to achieve desired wine qualities and helps provide information on interpreting flavor chemistry information

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tomasino Elizabeth¹, Chigo-Hernandez Mildred Melina¹ and DuBois Aubrey¹

1Oregon State University

Contact the author

Keywords

check-all-that-apply, triangle test, monoterpenes, chiral, descriptive analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Background: Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.