IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Abstract

Monoterpenes are important aroma compounds in white wines. Many monoterpenes are chiral and the chiral forms have different aroma qualities. Rose oxide is an important chiral compound found in Gewuztraminer wines. The enantiomers of the chiral rose oxide are found to vary in wines. The difference sin the enantiomeric ratios have the potential to alter wine aroma, as well as change aroma qualitities when in combination with other monoterpenes. The aim of this study was to evaluate rose oxide enantiomers at different ratios and the interaction of rose oxide with linalool and alpha-terpineol. Twelve compound combinations were tested in a dearomatized wine with diffferent ratios of rose oxide and combinations with linalool and alpha-terpineol. Triangle tests, check-all-that-apply (CATA) and descriptive analysis were used to evaluate the aroma of the wine treatments. Results show that the ratio of rose oxide enantiomers did alter aroma. Additionally, descriptive analysis showed that the rose oxide enantiomer ratios altered aroma when linalool and alpha-terpineol were at low and medium concentrations, influenceing grapefruit, lychee and stone fruit aromas. At high concentrations, linalool and alpha-terpineol mask rose oxide, resulting in wines described as tropical fruit, ginger, rose and honeysuckle. Understanding how monoterpenes alter aroma perception of white wines when at different combinations and concentrations is important to achieve desired wine qualities and helps provide information on interpreting flavor chemistry information

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Tomasino Elizabeth¹, Chigo-Hernandez Mildred Melina¹ and DuBois Aubrey¹

1Oregon State University

Contact the author

Keywords

check-all-that-apply, triangle test, monoterpenes, chiral, descriptive analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).