IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

Abstract

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value. According to the wine sector informative news, a rise in diversity will come into play due to the supply challenges of 2021 so that the industry will continue to push for a more diverse range of wines. “Wine drinkers, who are naturally curious, will embrace the opportunity to branch out”, due to a trend to a “palate
expansion and consumer curiosity” foreseen in 2022 (1). The report “White Wine Market” signed by the analysis company “Fact Market Research”, forecasts the boom in the growth of white wine consumption on the global market (2).Then, all actions aimed at valorizing and
improvi

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value. According to the wine sector informative news, a rise in diversity will come into play due to the supply challenges of 2021 so that the industry will continue to push for a more diverse range of wines. “Wine drinkers, who are naturally curious, will embrace the opportunity to branch out”, due to a trend to a “palate
expansion and consumer curiosity” foreseen in 2022 (1). The report “White Wine Market” signed by the analysis company “Fact Market Research”, forecasts the boom in the growth of white wine consumption on the global market (2).Then, all actions aimed at valorizing and
improving knowledge on products from the wide diversity of Italian native varieties can be impactful for the wine sector. The Diversity of Italian Wines (D-Wines) project aims to get a wide chemical, biochemical, and sensory multi-parametric dataset on Italian wines (3,4,5). In this context, the aroma of 18 mono-varietal white wines (Albana, Arneis, Cortese, Erbaluce, Garganega, Gewürztraminer, Greco di Tufo, Falanghina, Fiano, Lugana, Müller Thurgau, Nosiola, Pallagrello Bianco, Pinot Grigio, Ribolla Gialla, Verdicchio, Vermentino, Vernaccia di S. Gimignano) was investigated. A total of 240 labels (vintage 2019) was analyzed through a descriptive sensory assessment (orthonasal, retronasal, taste, mouthfeel) performed by 12 trained wine experts, and a sorting task carried out by 12 enologists (orthonasal, retronasal) based on a pre-defined list of aroma descriptors. Both intra- and inter-varietal sensory differences were highlighted by ANOVA (p<0.05) and Hierarchical Clustering Heatmap Analysis (HCHA) performed on odor intensities of descriptive analysis. 100% of Gewürztraminer wines were grouped together in a sub-cluster correlated to floral (rose, orange blossom), mango and vanilla odors, 62% of Müller Thurgau were closely clustered and correlated to thiolic (cat pee/box tree), fruity (passion fruit, grapefruit) and vegetal descriptors. The dendrogram mostly sorted the 240 wines into inter-varietal clusters. 

Multidimensional Scaling (MDS) and Agglomerative Hierarchical Clustering (AHC) of sorting data, provided intra-variety sensory maps showing how enologists grouped wines according to aroma similarities. A list of descriptors related to global sensory characteristics of samples within each group, was obtained. Both descriptive and sorting results, showed significant correlations with VOCs compositions.

This study provides a first comparative picture of the diverse sensory characteristics of white Italian wines, including some that have never been investigated before. The D-Wines project results will provide valuable information to winemakers, helping the improvement of the sensory consistency, quality, marketing communication and attractiveness of Italian wines

References

(1) https://www.decanter.com/features/top-wine-trends-for-2022
(2) https://winenews.it/en/the-boom-of-white-wine-in-the-world-as-seen-by-the-top-territories-of-italy_450979/
(3) Arapitsas et al. 2020, 68(47), 13353–13366; doi: 10.1021/acs.jafc.0c00879
(4) Giacosa et al. 2021, 143, 110277;  doi: 10.1016/j.foodres.2021.110277
(5) Piombino et al. 2020, 26(3), 233-246; doi : 10.1111/ajgw.1243

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piombino Paola1, Pittari Elisabetta1, Lisanti Maria Tiziana1, Parpinello Giuseppina Paola2, Ricci Arianna2, Carlin Silvia3, Curioni Andrea4, Luzzini Giovanni5, Marangon Matteo4, Mattivi Fulvio3, Rio Segade Susana6, Rolle Luca6, Ugliano Maurizio5 and Moio Luigi1

1 Department of Agricultural Sciences (DiA), University of Naples Federico II, Italy

2 Department of Agricultural and Food Sciences, University of Bologna, Italy

3 Research and Innovation Centre, Fondazione Edmund Mach (FEM), Italy

4 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy

5 Department of Biotechnology, University of Verona, Italy

6 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Italy

Contact the author

Keywords

White wines, Italian varieties, diversity, sensory analysis, olfactory profiles

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates).

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.