IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

Abstract

Two spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a). The second method, from the Commission Internationale de L’Eclairage (CIE), uses the entire spectrum from 300 nm to 800 nm to calculate the CIE Parameters L*, a*, and b*. While the OIV recommends a data interval of 5 nm for the CIE method, no such recommendations are given for other parameters such as the scan speed (OIV 2006b). To investigate the parameter settings wines from a dark red grape variety (Merlot), a light red grape variety (Vernatsch) and a white grape variety (Chardonnay) were measured with different data intervals and scan speeds.
Results indicate that the scan speed and data interval have significant impact on the color measurement and the accuracy is dependent from the lightness of a wine. Since both, the Glories system and the CIE L*a*b* system, are widely used in wine analysis it is important to know if those systems are comparable. With the analytical results in mind the correlation has to be conducted for dark red wines, light red wines and white wines. The analysis of 112 wines (56 red wines and 56 white wines) from different grape varieties, origins, and vintages, using both the Glories and CIE methods revealed that the correlation between
the two methods is only possible for dark red wines. Furthermore it is unclear which of the methods are more consonant with the sensory perception. Due to the lack of standardisation a new method of color evaluation was developed. The CIE L*a*b* system better reflects sensory perception than the Glories system, but both systems cannot describe every facet of wine color

References

OIV (2006)a. Determination of chromatic characteristics according to CIELab, Method OIV-MA-AS2-07B. COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS, OIV.
OIV (2006)b. Determination of chromatic characteristics according to CIELab, Method OIV-MA-AS2-11. COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS, OIV.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Hensel Marcel¹, Scheiermann Marina¹and Durner Dominik¹

¹Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz

Contact the author

Keywords

color analysis, color spaces, Glories, spectrophotometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.