IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Abstract

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season. In grapevine, excessive heat can lead to not only crop loss, but a reduction in quality of the berries and resulting wine. The primary means of mitigating damage due to heatwaves is by applying excess irrigation water prior to and during the heatwave event, thus promoting evaporative cooling by the plant and reducing soil temperatures in the rooting zone and surface.  California wine-growing regions, among others, face a future of
decreased water availability, combined with increases in heatwave incidence, frequency, and intensity. Thus, we will require a greater understanding of the effects of heatwaves and water use at different times during development on grapevine physiology, berry composition, and wine chemistry and quality. In this study we evaluated the impact of different pre-heat wave irrigation practices on vine physiology and berry composition across the 2019 growing season in a commercial Cabernet Sauvignon vineyard in the Northern Central Valley of California, USA (Lodi, CA). Differential irrigation treatments were applied only when a heat event took place and started one or two days before each heatwave and continued until the last day of the heat event. Three irrigation treatments were implemented: a control or baseline, which was exposed to deficit irrigation and held at 60% ET, a second treatment where the irrigation was double the baseline  (2x baseline ET), and third treatment with triple the amount of water of the baseline (3x baseline ET). Replicated wine lots were fermented from each treatment following a standard red wine fermentation protocol. A trained panel characterized  sensorially the aroma and flavor profiles of the wines. Moreover, the wines’ volatile and phenolic profiles were analyzed and correlated to the sensory. 

We found that plants were able to recover from physiological stress caused by heat events but had a negative impact on berry biochemical traits. Negative effects on berry chemistry resulted from over and underwatering during heat waves. The sensory results showed how the differences found in treatments from a physiological and berry chemistry perspective are translated to the wines’ sensory properties and chemical characteristics

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cantu Annegret¹, Heymann Hildegarde¹, Campbell James¹, Galeano Martina¹, Sanchez Luis ², Dokoozlian Nicolas², Webley AD¹, Lerno L.¹, Ebler SE ¹,McElrone Andrew J.³, Bagshaw Sophia¹and Forrestel Elisabeth J.¹

¹Department of Viticulture and Enology, University of California Davis
²​E.&J. Gallo Winery
³USDA, Davis, California

Contact the author

Keywords

heatwaves, irrigation, cabernet sauvignon, wine chemical characteristics, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.