IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Abstract

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth. One important aspect is astringency produced by wine, which can be described as the sensation of dryness and puckering in the mouth, specifically occurring between the tongue and the palate after swallowing. Results obtained have contributed to important advances in trying to mimic oral conditions and astringency determination by lubrication tests (Brossard et al., 2021; Brossard et al., 2016). However, these results revealed complex and specific interactions between tannins and saliva proteins with or without the precipitation of the complex (Brossard et al., 2021; Rossetti et al., 2009; Cala et al., 2012; Brossard et al., 2016). In addition, astringency sub-qualities are affected not only the presence of particles, but also by their shape, size and texture (Brossard et al., 2021).
The latter presents a significant challenge in predicting astringency and mimicking oral conditions when tasting. Likewise, variations in the tribometers used and working conditions like tribopairs, contact load and sliding speed, make the comparison of different studies more difficult. This work aims at shedding some light on recent advances trying to correlate physical measures, such as the friction coefficient of oral tribology, with prevailing theories on underlying physiological causes for sensory perception of wines. Friction coefficient was evaluated using different experimental conditions including contact load, and sliding speed, using model wines and wines with different sensory astringency. Results of this work on the friction coefficient suggest that both soluble and insoluble aggregates could be responsible for oral lubrication modulation. A mechanism for astringency intensity and its sub-qualities that illustrates the role of the aggregates is proposed. The model for astringency takes into consideration not only the presence of the particles (shape, size and texture) but also its movement within the oral cavity. These aggregates could be sensed and modulate the friction coefficient, increasing or decreasing oral lubrication. Findings of this work propose an effect of aggregates on sensory perception and opens the possibility to explore their effect on oral lubrication.

References

 

Brossard, N., Cai, H., Osorio, F., Bordeu, E. & Chen, J. (2016). Oral tribology study of astringency sensation of red wines. Journal of Texture Studies, 47, 392–402.
Brossard, N., Gonzalez‐Muñoz, B., Pavez, C., Ricci, A., Wang, X., Osorio, F., Bordeu, E., Paola Parpinello, G. and Chen, J., 2021. Astringency sub‐qualities of red wines and the influence of wine–saliva aggregates. International Journal of Food Science & Technology, 56(10), pp.5382-5394.
Cala, O., Dufourc, E.J., Fouquet, E., Manigand, C., Laguerre, M. & Pianet, I. (2012). The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Langmuir, 28, 17410–17418.
Rossetti, D., Bongaerts, J.H.H., Wantling, E., Stokes, J.R. & Wil- liamson, A.-M. (2009). Astringency of tea catechin: More than an oral lubrication tactile percept. Food Hydrocolloids, 23, 1984–1992

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Brossard Natalia¹, Madrid Romina¹, Alfaro Gabriel¹, Rosenkranz Andreas¹and Bordeu Edumundo¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile

Contact the author

Keywords

Wine astringency, tannin–protein aggregates, red wine, oral lubrication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

High-throughput direct monitoring of microbial resources for oenology by direct injection mass spectrometry

Microorganisms have been widely used in oenology since prehistoric times. Their metabolism significantly impacts many wine properties and is particularly essential for the production of flavor compounds, thereby affecting perceived wine quality.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.