IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Abstract

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity. All together these carbonyl bisulfites correspond to bound SO2. The affinity of each carbonyl for sulfur dioxide is defined by the dissociation constant Kd of its carbonyl bisulfite. Among wine compounds, acetaldehyde which carbonyl bisulfite Kd is 2.4×10-3 mM is considered as the one with the highest affinity for SO2. Acetaldehyde origins is both an intermediary in alcoholic fermentation pathway but could also be produced from ethanol oxidation. Diacetyl (2,3 butanedione), has also a microbiological origin and an appreciable affinity for sulfur dioxide (carbonyl bisulfite Kd is 0.1 mM). Moreover, diacetyl is able to be produced but also reduced by yeasts and their potential sensory impact on red wines has already been established.
To evaluate if acetaldehyde and diacetyl could be at the origin of sensory specificities in wines without SO2, sensory profiles were classically determined, using sensory descriptors generation and panel training, on different modalities illustrating average levels of diacetyl, acetaldehyde and free SO2 in wines with or without sulfites and prepared from the same commercial without sulfites wine. Such an approach allowed to reveal that acetaldehyde and free SO2 were involved in the perception of “Coolness” depending of their concentrations in wines with and without added SO2. Diacetyl, meanwhile, impacted fruity aroma perception in wines with added SO2 and was responsible for sensory differences between wine with and without added SO2. Thus, the addition of diacetyl and SO2, at average concentrations found in wines with SO2, in a wine without added SO2 led to a decrease of “Fresh Black Fruits”, “Fresh Raspberry” and “Coolness” perception and an increase of “Jammy Black Fruits” perception.  These results are in line with sensory differences already highlighted in studies dealing with global olfactive characterization of reds wines with and without sulfites and help to explain red wines without sulfites sensory specificities

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article 

Authors

Pelonnier-Magimel Edouard¹, Cameleyre Margaux¹, Riquier Laurent¹and Barbe Jean-Christophe ¹

¹Univ. Bordeaux, INRAE, ISVV, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV

Contact the author

Keywords

Wine without sulfites, acetaldehyde, diacetyl, carbonyl bisulfite, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture.

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.