IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Abstract

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity. All together these carbonyl bisulfites correspond to bound SO2. The affinity of each carbonyl for sulfur dioxide is defined by the dissociation constant Kd of its carbonyl bisulfite. Among wine compounds, acetaldehyde which carbonyl bisulfite Kd is 2.4×10-3 mM is considered as the one with the highest affinity for SO2. Acetaldehyde origins is both an intermediary in alcoholic fermentation pathway but could also be produced from ethanol oxidation. Diacetyl (2,3 butanedione), has also a microbiological origin and an appreciable affinity for sulfur dioxide (carbonyl bisulfite Kd is 0.1 mM). Moreover, diacetyl is able to be produced but also reduced by yeasts and their potential sensory impact on red wines has already been established.
To evaluate if acetaldehyde and diacetyl could be at the origin of sensory specificities in wines without SO2, sensory profiles were classically determined, using sensory descriptors generation and panel training, on different modalities illustrating average levels of diacetyl, acetaldehyde and free SO2 in wines with or without sulfites and prepared from the same commercial without sulfites wine. Such an approach allowed to reveal that acetaldehyde and free SO2 were involved in the perception of “Coolness” depending of their concentrations in wines with and without added SO2. Diacetyl, meanwhile, impacted fruity aroma perception in wines with added SO2 and was responsible for sensory differences between wine with and without added SO2. Thus, the addition of diacetyl and SO2, at average concentrations found in wines with SO2, in a wine without added SO2 led to a decrease of “Fresh Black Fruits”, “Fresh Raspberry” and “Coolness” perception and an increase of “Jammy Black Fruits” perception.  These results are in line with sensory differences already highlighted in studies dealing with global olfactive characterization of reds wines with and without sulfites and help to explain red wines without sulfites sensory specificities

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article 

Authors

Pelonnier-Magimel Edouard¹, Cameleyre Margaux¹, Riquier Laurent¹and Barbe Jean-Christophe ¹

¹Univ. Bordeaux, INRAE, ISVV, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV

Contact the author

Keywords

Wine without sulfites, acetaldehyde, diacetyl, carbonyl bisulfite, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products.
Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition.

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Chemical composition of press and free-run wines from three vintages and Bordeaux grape varieties. A comprehensive analysis

Press wines play a crucial role in red winemaking, representing up to 15% of the final blend [1]. Optimizing their value is essential both economically and for maintaining wine identity, especially given evolving climatic and societal challenges. However, little recent research exists on their composition.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.