IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Abstract

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity. All together these carbonyl bisulfites correspond to bound SO2. The affinity of each carbonyl for sulfur dioxide is defined by the dissociation constant Kd of its carbonyl bisulfite. Among wine compounds, acetaldehyde which carbonyl bisulfite Kd is 2.4×10-3 mM is considered as the one with the highest affinity for SO2. Acetaldehyde origins is both an intermediary in alcoholic fermentation pathway but could also be produced from ethanol oxidation. Diacetyl (2,3 butanedione), has also a microbiological origin and an appreciable affinity for sulfur dioxide (carbonyl bisulfite Kd is 0.1 mM). Moreover, diacetyl is able to be produced but also reduced by yeasts and their potential sensory impact on red wines has already been established.
To evaluate if acetaldehyde and diacetyl could be at the origin of sensory specificities in wines without SO2, sensory profiles were classically determined, using sensory descriptors generation and panel training, on different modalities illustrating average levels of diacetyl, acetaldehyde and free SO2 in wines with or without sulfites and prepared from the same commercial without sulfites wine. Such an approach allowed to reveal that acetaldehyde and free SO2 were involved in the perception of “Coolness” depending of their concentrations in wines with and without added SO2. Diacetyl, meanwhile, impacted fruity aroma perception in wines with added SO2 and was responsible for sensory differences between wine with and without added SO2. Thus, the addition of diacetyl and SO2, at average concentrations found in wines with SO2, in a wine without added SO2 led to a decrease of “Fresh Black Fruits”, “Fresh Raspberry” and “Coolness” perception and an increase of “Jammy Black Fruits” perception.  These results are in line with sensory differences already highlighted in studies dealing with global olfactive characterization of reds wines with and without sulfites and help to explain red wines without sulfites sensory specificities

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article 

Authors

Pelonnier-Magimel Edouard¹, Cameleyre Margaux¹, Riquier Laurent¹and Barbe Jean-Christophe ¹

¹Univ. Bordeaux, INRAE, ISVV, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV

Contact the author

Keywords

Wine without sulfites, acetaldehyde, diacetyl, carbonyl bisulfite, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sensory evaluation of ‘Sauvignon blanc’ grapes by a trained panel

The study described the effect of sensory analysis on commercial ‘Sauvignon blanc’ vineyards within the Stellenbosch Wine of Origin District. The sensorial evaluation of the berries was able to give a description of each parcel type and relate it to the cultural practices.

Observed climatic trends in South African wine regions and potential implications for viticulture

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Enhancing viticulture sustainability with biochar: results of field experiments in Italy

The increasing vulnerability of viticulture to climate change necessitates innovative solutions to improve its sustainability and resilience.