IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Abstract

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity. All together these carbonyl bisulfites correspond to bound SO2. The affinity of each carbonyl for sulfur dioxide is defined by the dissociation constant Kd of its carbonyl bisulfite. Among wine compounds, acetaldehyde which carbonyl bisulfite Kd is 2.4×10-3 mM is considered as the one with the highest affinity for SO2. Acetaldehyde origins is both an intermediary in alcoholic fermentation pathway but could also be produced from ethanol oxidation. Diacetyl (2,3 butanedione), has also a microbiological origin and an appreciable affinity for sulfur dioxide (carbonyl bisulfite Kd is 0.1 mM). Moreover, diacetyl is able to be produced but also reduced by yeasts and their potential sensory impact on red wines has already been established.
To evaluate if acetaldehyde and diacetyl could be at the origin of sensory specificities in wines without SO2, sensory profiles were classically determined, using sensory descriptors generation and panel training, on different modalities illustrating average levels of diacetyl, acetaldehyde and free SO2 in wines with or without sulfites and prepared from the same commercial without sulfites wine. Such an approach allowed to reveal that acetaldehyde and free SO2 were involved in the perception of “Coolness” depending of their concentrations in wines with and without added SO2. Diacetyl, meanwhile, impacted fruity aroma perception in wines with added SO2 and was responsible for sensory differences between wine with and without added SO2. Thus, the addition of diacetyl and SO2, at average concentrations found in wines with SO2, in a wine without added SO2 led to a decrease of “Fresh Black Fruits”, “Fresh Raspberry” and “Coolness” perception and an increase of “Jammy Black Fruits” perception.  These results are in line with sensory differences already highlighted in studies dealing with global olfactive characterization of reds wines with and without sulfites and help to explain red wines without sulfites sensory specificities

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article 

Authors

Pelonnier-Magimel Edouard¹, Cameleyre Margaux¹, Riquier Laurent¹and Barbe Jean-Christophe ¹

¹Univ. Bordeaux, INRAE, ISVV, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV

Contact the author

Keywords

Wine without sulfites, acetaldehyde, diacetyl, carbonyl bisulfite, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.