IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Abstract

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.
In this work, Cabernet Sauvignon wines were macerated after malolactic fermentation with their own toasted vine-shoots fragments in two different doses and after removed them, aged in bottle. The quality of wines was analyzed at bottling time and after  120 days, in terms of phenolic compounds by HPLC-DAD, volatile composition by SBSE-GC-MS and at sensory level by a specific scorecard.
Regarding volatile compounds, results showed that at bottling time the greatest differences with respect to the control wine were observed when the lowest dose of toasted vine-shoots was used. These wines showed an increase in the total of alcohols and aldehydes, along with some volatile phenols such as guaiacol or syringol and some terpenes as geraniol or linalool. However, after  bottling time the content of volatile compounds in wines from vine-shoot treatments increased significantly to higher total levels of volatile compounds than the control wine. Moreover, vanillin was detected in all wines after ageing in bottle with slightly higher content in wines macerated with the lowest dosage of vine-shoots.
In terms of phenolic compounds, wines elaborated in contact with vine-shoots showed a lower content of total phenolic compounds than the control wine at bottling time.
Nevertheless, after  bottling time, wines treated with the lower dose of vine-shoots showed an increase in total phenolic compounds until similar levels of control wine, which reduced their content along bottling. This suggests a better evolution of wines macerated with lower doses of toasted vine-shoots. In detail, stilbenes were the only family of phenolic compounds that increased its concentration as a consequence of vine-shoots maceration. trans-Resveratrol increased significantly when vine-shoots were used, reaching levels up to 9 times higher than the control wine, and viniferine was observed at the endo of bottling time in all wines, but with a higher concentration in treated wines. In addition, and as expected, the total anthocyanin content was reduced in all wines with bottle aging, which was less in wines from the lowest dose of vine-shoots.
Finally, in terms of sensory analysis, wines from vine-shoots treatments showed enhanced notes like nuts, toasted, and sweet woody, being this last one associated with the use of toasted vine-shoots, as well as a reduction in the vegetal descriptors characteristic of the Cabernet Sauvignon variety. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Salinas M.Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán F.1,2, Sánchez-Gómez R.1 and Alonso Gonzalo L.1

1 E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Spain
2 Pago de la Jaraba, Crta 

Contact the author

Keywords

bottle ageing, enological additive, phenolic and volatile compounds, sensory analysis, toasted vine-shoots

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Arbuscular mycorrhizal fungi as biomarkers of vineyard yield in Champagne

The vine is colonized by a multitude of micro-organisms (fungi, bacteria, oomycetes) mainly coming from the microbial reservoir constituted by the soil. These microorganisms have positive or negative effects on the vine (protection against pathogens, resistance to abiotic stress, nutrition, but also triggering of diseases) (Fournier, Pellan et al. 2022). In addition to these functional roles, they respond quickly to environmental changes (climate, cultural practices) which could make them good bioindicators of the functioning of the wine ecosystem.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Parcours de découverte des terroirs viticoles

A partir des recherches conduites sur la caractérisation des terroirs viticoles par des chercheurs de l’Unité de Recherches Vigne et Vin (1, 2, 3, 4, 5) du Centre INRA d’Angers, Terre des Sciences, le Centre de Culture Scientifique et Technique d’Angers (CCSTA) a mis au point un parcours de découverte d’une journée dans le vignoble angevin avec une approche pluridisciplinaire.