IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Abstract

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France. Wine grapes have shown to be incredibly sensitive towards the smoke produced from nearby wildfires, acquiring negative sensory characteristics, such as ashy, burnt, or campfire-like flavors and aromas. The chemical markers often associated with smoke, guaiacol and 4-ethyl guaiacol, can delineate the presence of a nearby fire, though there has been some disagreement on the chemical components responsible for some of the negative flavors and aromas.1,2 This study uses a 13C-tagged fuel source, barley (Hordeum vulgare), that is grown in 13CO2 for 10 days of its life cycle using pulse-labelling techniques. 13C content of the barley was evaluated using isotope ratio mass spectrometry, revealing 13C/12C content as high as 4.47 ± 0.75% compared to the natural ~1.08% for natural abundance in plant material. Grapes were exposed to 13C-labelled smoke in separate post- and pre-harvest trials, burning 5 g and 10 g dried barley bundles, respectively, every 30 minutes for 6 hours. Smoke density was piped “cold” to enclosures containing wine grapes and smoke was maintained at 20-100 mg/m3 for smoke particles < 1 μm, simulating a very nearby fire. The exposed grapes were Pinot noir and Chardonnay grown in Monroe, Oregon at Woodhall III Vineyards. The 13C is ideal for chemical identification using 13C-NMR after HPLC and GCMS separation and evaluation to identify novel targets for smoke chemicals affecting wine. Determining better chemical targets for amelioration will ultimately lead toward better, more targeted, amelioration techniques.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cerrato D.Cole1, Garcia Lindsay1, Eberz Elaina1, Penner Mike1 and Tomasino Elizabeth1

1Oregon State University, 100 Wiegand Hall, 3051 SW Campus Way, Corvallis, Oregon, USA 97331

Contact the author

Keywords

Smoke, 13C, Pinot noir, Chardonnay

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).