IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Abstract

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France. Wine grapes have shown to be incredibly sensitive towards the smoke produced from nearby wildfires, acquiring negative sensory characteristics, such as ashy, burnt, or campfire-like flavors and aromas. The chemical markers often associated with smoke, guaiacol and 4-ethyl guaiacol, can delineate the presence of a nearby fire, though there has been some disagreement on the chemical components responsible for some of the negative flavors and aromas.1,2 This study uses a 13C-tagged fuel source, barley (Hordeum vulgare), that is grown in 13CO2 for 10 days of its life cycle using pulse-labelling techniques. 13C content of the barley was evaluated using isotope ratio mass spectrometry, revealing 13C/12C content as high as 4.47 ± 0.75% compared to the natural ~1.08% for natural abundance in plant material. Grapes were exposed to 13C-labelled smoke in separate post- and pre-harvest trials, burning 5 g and 10 g dried barley bundles, respectively, every 30 minutes for 6 hours. Smoke density was piped “cold” to enclosures containing wine grapes and smoke was maintained at 20-100 mg/m3 for smoke particles < 1 μm, simulating a very nearby fire. The exposed grapes were Pinot noir and Chardonnay grown in Monroe, Oregon at Woodhall III Vineyards. The 13C is ideal for chemical identification using 13C-NMR after HPLC and GCMS separation and evaluation to identify novel targets for smoke chemicals affecting wine. Determining better chemical targets for amelioration will ultimately lead toward better, more targeted, amelioration techniques.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cerrato D.Cole1, Garcia Lindsay1, Eberz Elaina1, Penner Mike1 and Tomasino Elizabeth1

1Oregon State University, 100 Wiegand Hall, 3051 SW Campus Way, Corvallis, Oregon, USA 97331

Contact the author

Keywords

Smoke, 13C, Pinot noir, Chardonnay

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.