IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Abstract

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France. Wine grapes have shown to be incredibly sensitive towards the smoke produced from nearby wildfires, acquiring negative sensory characteristics, such as ashy, burnt, or campfire-like flavors and aromas. The chemical markers often associated with smoke, guaiacol and 4-ethyl guaiacol, can delineate the presence of a nearby fire, though there has been some disagreement on the chemical components responsible for some of the negative flavors and aromas.1,2 This study uses a 13C-tagged fuel source, barley (Hordeum vulgare), that is grown in 13CO2 for 10 days of its life cycle using pulse-labelling techniques. 13C content of the barley was evaluated using isotope ratio mass spectrometry, revealing 13C/12C content as high as 4.47 ± 0.75% compared to the natural ~1.08% for natural abundance in plant material. Grapes were exposed to 13C-labelled smoke in separate post- and pre-harvest trials, burning 5 g and 10 g dried barley bundles, respectively, every 30 minutes for 6 hours. Smoke density was piped “cold” to enclosures containing wine grapes and smoke was maintained at 20-100 mg/m3 for smoke particles < 1 μm, simulating a very nearby fire. The exposed grapes were Pinot noir and Chardonnay grown in Monroe, Oregon at Woodhall III Vineyards. The 13C is ideal for chemical identification using 13C-NMR after HPLC and GCMS separation and evaluation to identify novel targets for smoke chemicals affecting wine. Determining better chemical targets for amelioration will ultimately lead toward better, more targeted, amelioration techniques.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cerrato D.Cole1, Garcia Lindsay1, Eberz Elaina1, Penner Mike1 and Tomasino Elizabeth1

1Oregon State University, 100 Wiegand Hall, 3051 SW Campus Way, Corvallis, Oregon, USA 97331

Contact the author

Keywords

Smoke, 13C, Pinot noir, Chardonnay

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor.

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.