IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Abstract

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France. Wine grapes have shown to be incredibly sensitive towards the smoke produced from nearby wildfires, acquiring negative sensory characteristics, such as ashy, burnt, or campfire-like flavors and aromas. The chemical markers often associated with smoke, guaiacol and 4-ethyl guaiacol, can delineate the presence of a nearby fire, though there has been some disagreement on the chemical components responsible for some of the negative flavors and aromas.1,2 This study uses a 13C-tagged fuel source, barley (Hordeum vulgare), that is grown in 13CO2 for 10 days of its life cycle using pulse-labelling techniques. 13C content of the barley was evaluated using isotope ratio mass spectrometry, revealing 13C/12C content as high as 4.47 ± 0.75% compared to the natural ~1.08% for natural abundance in plant material. Grapes were exposed to 13C-labelled smoke in separate post- and pre-harvest trials, burning 5 g and 10 g dried barley bundles, respectively, every 30 minutes for 6 hours. Smoke density was piped “cold” to enclosures containing wine grapes and smoke was maintained at 20-100 mg/m3 for smoke particles < 1 μm, simulating a very nearby fire. The exposed grapes were Pinot noir and Chardonnay grown in Monroe, Oregon at Woodhall III Vineyards. The 13C is ideal for chemical identification using 13C-NMR after HPLC and GCMS separation and evaluation to identify novel targets for smoke chemicals affecting wine. Determining better chemical targets for amelioration will ultimately lead toward better, more targeted, amelioration techniques.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cerrato D.Cole1, Garcia Lindsay1, Eberz Elaina1, Penner Mike1 and Tomasino Elizabeth1

1Oregon State University, 100 Wiegand Hall, 3051 SW Campus Way, Corvallis, Oregon, USA 97331

Contact the author

Keywords

Smoke, 13C, Pinot noir, Chardonnay

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).