IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Abstract

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed. On the other hand, many works have studied the phenomenon of the extraction in the wine of the compounds that are present in the skin which is affected by several factors as maceration time, temperature, pH, alcoholic degree, use of enzymes. Other important factor to take into account in their extractability of these compounds is the grape cell wall composition, influenced by variety, culture practices, climate conditions, and its facility to be break down. Thus, in this work we present for the first time, the effect  of methyl jasmonate (MeJ) in conventional way and  as nanoparticles doped with MeJ (nano-MeJ) on the cell wall composition of Monastrell and also the relation with its wine phenolic content.Three foliar treatments were applied by triplicate on veraison and a week later, with 10 vines each replicate:  i) Control, ii) MeJ 10 mM  and iii) Nano-MeJ (equivalent to 1mM in MeJ) over three seasons (2019, 2020 and 2021).Cell wall material was isolated using the procedure described by Paladines-Quezada et al. [1]. Uronic acids, proteins, total phenols and cellulosic glucose were analysed following the methodology propose by Apolinar-Valiente et al. [2] .On the other hand the following parameters were evaluated in wine: colour intensity, total polyphenols index and anthocyanins.Regarding cell wall composition, the results showed a decrease in the concentration of cellulosic glucose and total phenols, an increased in proteins and specially in the uronic acids in both treatments applied.With respect to the wine results, the highest anthocyanin concentration was obtained in wines elaborated with MeJ treated grapes but this increase was not evident in wines elaborated with grapes treated with nano-MeJ. So it is possible that the interaction of the increment in proteins and uronic acids and the reduction of cellulosic glucose in the cell wall for this treatment diminished the extractability of phenolic compounds into wine. Other possibility is that the concentration applied in the form of nanoparticles was not sufficient to increase its amount of phenolic compounds in grapes and therefore in wines.Finally, all the parameters studied in grapes and wines were affected by the season studied, being evident the interaction between treatment and year for all of them except for cellulosic glucose and colour intensity. 

References

1. Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem. 2019, 277, 691–697, doi:10.1016/j.foodchem.2018.11.029.
2. Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chem. 2015, 187, 89–97, doi:10.1016/j.foodchem.2015.04.042.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giménez-Bañón María José1, Paladines-Quezada Diego F.1, Moreno-Olivares Juan D.1, Parra-Torrejón Belén2, Ramírez-Rodríguez Gloria B.2, Delgado-López José M.2, Fernández-Fernández José-Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA)
2Departamento de Química Inorgánica, Facultad de ciencias, Universidad de Granada

Contact the author

Keywords

elicitor, nanotechnology, anthocianyn, uronic acids, sustainable agriculture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate

Precocity for fruit ripening is a genetically determined characteristic that is highly variable from one cultivar to another. In traditional wine-growing regions of Europe, growers have used this property to adapt the vines to local climatic conditions in order to maximize terroir expression

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment