IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Abstract

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed. On the other hand, many works have studied the phenomenon of the extraction in the wine of the compounds that are present in the skin which is affected by several factors as maceration time, temperature, pH, alcoholic degree, use of enzymes. Other important factor to take into account in their extractability of these compounds is the grape cell wall composition, influenced by variety, culture practices, climate conditions, and its facility to be break down. Thus, in this work we present for the first time, the effect  of methyl jasmonate (MeJ) in conventional way and  as nanoparticles doped with MeJ (nano-MeJ) on the cell wall composition of Monastrell and also the relation with its wine phenolic content.Three foliar treatments were applied by triplicate on veraison and a week later, with 10 vines each replicate:  i) Control, ii) MeJ 10 mM  and iii) Nano-MeJ (equivalent to 1mM in MeJ) over three seasons (2019, 2020 and 2021).Cell wall material was isolated using the procedure described by Paladines-Quezada et al. [1]. Uronic acids, proteins, total phenols and cellulosic glucose were analysed following the methodology propose by Apolinar-Valiente et al. [2] .On the other hand the following parameters were evaluated in wine: colour intensity, total polyphenols index and anthocyanins.Regarding cell wall composition, the results showed a decrease in the concentration of cellulosic glucose and total phenols, an increased in proteins and specially in the uronic acids in both treatments applied.With respect to the wine results, the highest anthocyanin concentration was obtained in wines elaborated with MeJ treated grapes but this increase was not evident in wines elaborated with grapes treated with nano-MeJ. So it is possible that the interaction of the increment in proteins and uronic acids and the reduction of cellulosic glucose in the cell wall for this treatment diminished the extractability of phenolic compounds into wine. Other possibility is that the concentration applied in the form of nanoparticles was not sufficient to increase its amount of phenolic compounds in grapes and therefore in wines.Finally, all the parameters studied in grapes and wines were affected by the season studied, being evident the interaction between treatment and year for all of them except for cellulosic glucose and colour intensity. 

References

1. Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem. 2019, 277, 691–697, doi:10.1016/j.foodchem.2018.11.029.
2. Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chem. 2015, 187, 89–97, doi:10.1016/j.foodchem.2015.04.042.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giménez-Bañón María José1, Paladines-Quezada Diego F.1, Moreno-Olivares Juan D.1, Parra-Torrejón Belén2, Ramírez-Rodríguez Gloria B.2, Delgado-López José M.2, Fernández-Fernández José-Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA)
2Departamento de Química Inorgánica, Facultad de ciencias, Universidad de Granada

Contact the author

Keywords

elicitor, nanotechnology, anthocianyn, uronic acids, sustainable agriculture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.

Grapevine nitrogen dynamics as a function of crop thinning

Context and purpose. Nitrogen (N) is crucial for plant development but is used inefficiently, with only 30–40% of the fertilizer assimilated by crops, leading to significant environmental losses.

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage.