IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

Abstract

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed. On the other hand, many works have studied the phenomenon of the extraction in the wine of the compounds that are present in the skin which is affected by several factors as maceration time, temperature, pH, alcoholic degree, use of enzymes. Other important factor to take into account in their extractability of these compounds is the grape cell wall composition, influenced by variety, culture practices, climate conditions, and its facility to be break down. Thus, in this work we present for the first time, the effect  of methyl jasmonate (MeJ) in conventional way and  as nanoparticles doped with MeJ (nano-MeJ) on the cell wall composition of Monastrell and also the relation with its wine phenolic content.Three foliar treatments were applied by triplicate on veraison and a week later, with 10 vines each replicate:  i) Control, ii) MeJ 10 mM  and iii) Nano-MeJ (equivalent to 1mM in MeJ) over three seasons (2019, 2020 and 2021).Cell wall material was isolated using the procedure described by Paladines-Quezada et al. [1]. Uronic acids, proteins, total phenols and cellulosic glucose were analysed following the methodology propose by Apolinar-Valiente et al. [2] .On the other hand the following parameters were evaluated in wine: colour intensity, total polyphenols index and anthocyanins.Regarding cell wall composition, the results showed a decrease in the concentration of cellulosic glucose and total phenols, an increased in proteins and specially in the uronic acids in both treatments applied.With respect to the wine results, the highest anthocyanin concentration was obtained in wines elaborated with MeJ treated grapes but this increase was not evident in wines elaborated with grapes treated with nano-MeJ. So it is possible that the interaction of the increment in proteins and uronic acids and the reduction of cellulosic glucose in the cell wall for this treatment diminished the extractability of phenolic compounds into wine. Other possibility is that the concentration applied in the form of nanoparticles was not sufficient to increase its amount of phenolic compounds in grapes and therefore in wines.Finally, all the parameters studied in grapes and wines were affected by the season studied, being evident the interaction between treatment and year for all of them except for cellulosic glucose and colour intensity. 

References

1. Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem. 2019, 277, 691–697, doi:10.1016/j.foodchem.2018.11.029.
2. Apolinar-Valiente, R.; Romero-Cascales, I.; Gómez-Plaza, E.; López-Roca, J.M.; Ros-García, J.M. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chem. 2015, 187, 89–97, doi:10.1016/j.foodchem.2015.04.042.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Giménez-Bañón María José1, Paladines-Quezada Diego F.1, Moreno-Olivares Juan D.1, Parra-Torrejón Belén2, Ramírez-Rodríguez Gloria B.2, Delgado-López José M.2, Fernández-Fernández José-Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA)
2Departamento de Química Inorgánica, Facultad de ciencias, Universidad de Granada

Contact the author

Keywords

elicitor, nanotechnology, anthocianyn, uronic acids, sustainable agriculture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).