IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Abstract

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing. Polyphenols play an important role in red wine and exhibit a wide diversity in their structure and properties. They are responsible for wine colour, texture and taste (astringency, bitterness) and exhibit some health properties. The principal class of non-flavonoid polyphenolic compounds are the phenolic acids and stilbenes. Among the flavonoids, anthocyanins and tannins are the major structural classes. The aim of this study was to characterise the detailed response of wine polyphenolic structure and composition to an oxygen treatment applied during fermentation. A specific focus was to determine the interaction of discrete polyphenolic classes with poly-L-proline (PLP). A control Shiraz wine was prepared under reductive conditions during fermentation, in triplicate. To the same grape source, an aeration treatment was initiated on day 3 following a 1.8 °Bé decrease for 48 h at 5 L/min, also in triplicate.  After a 12-month ageing period, wines were fractionated where: F1 = Phenolic acids, F2 = flavan-3-ol monomers, F3 = flavan-3-ol oligomers, F4 = anthocyanins, pyranoanthocyanins; and F5 = polymeric proanthocyanidins, pigmented proanthocyanins and other derived complexes. The composition of fractions F1 to F4 was verified by LC-MS, and F5 was characterised by a combination of analytical techniques specific to proanthocyanidins. The interaction between the polyphenol fractions and PLP was measured by isothermal titration calorimetry (ITC). A strong binding interaction was observed between F1, the phenolic acids, and PLP by ITC, and was not affected by the oxygen treatment. In fact, a strong hydrophobic interaction and hydrogen bonding was implicated in the interaction. It was found that for fractions F2 and F3, no binding events with PLP were observed by ITC, irrespective of the oxygen level applied. Stronger binding events with PLP were observed for the F4 and F5 polyphenolic fractions, but interestingly, only in those prepared from wines which had oxygen treatment. Moreover, hydrophobic interaction and hydrogen bonding was detected just for the oxygen treatment for F4 and F5. Contrary to expectation, no binding with PLP could be detected for F4 and F5 from the control wine. Further investigation of the properties of the fractions was conducted to account for the differences observed, including their composition, hydrophobicity and aggregation. This presentation will provide new insights into the potential role of discrete polyphenolic classes in driving in-mouth sensory properties, like astringency, which might be elicited following binding with proline-rich salivary proteins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Jouin Alicia1, Falconer Robert J.2, Waterlot Aude3, Day Martin1, Schmidt Simon1 and Bindon Keren1

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia 
2Department of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
3Department of Food Science and Human Nutrition, Courtesy Faculty, Horticulture, Iowa State University, 2567 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA

Contact the author

Keywords

Tannins, Anthocyanins, Oxygen, Isothermal Titration Calorimetry, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another.

Which heat test can realistically estimate white wine haze risk?

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.