IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Abstract

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing. Polyphenols play an important role in red wine and exhibit a wide diversity in their structure and properties. They are responsible for wine colour, texture and taste (astringency, bitterness) and exhibit some health properties. The principal class of non-flavonoid polyphenolic compounds are the phenolic acids and stilbenes. Among the flavonoids, anthocyanins and tannins are the major structural classes. The aim of this study was to characterise the detailed response of wine polyphenolic structure and composition to an oxygen treatment applied during fermentation. A specific focus was to determine the interaction of discrete polyphenolic classes with poly-L-proline (PLP). A control Shiraz wine was prepared under reductive conditions during fermentation, in triplicate. To the same grape source, an aeration treatment was initiated on day 3 following a 1.8 °Bé decrease for 48 h at 5 L/min, also in triplicate.  After a 12-month ageing period, wines were fractionated where: F1 = Phenolic acids, F2 = flavan-3-ol monomers, F3 = flavan-3-ol oligomers, F4 = anthocyanins, pyranoanthocyanins; and F5 = polymeric proanthocyanidins, pigmented proanthocyanins and other derived complexes. The composition of fractions F1 to F4 was verified by LC-MS, and F5 was characterised by a combination of analytical techniques specific to proanthocyanidins. The interaction between the polyphenol fractions and PLP was measured by isothermal titration calorimetry (ITC). A strong binding interaction was observed between F1, the phenolic acids, and PLP by ITC, and was not affected by the oxygen treatment. In fact, a strong hydrophobic interaction and hydrogen bonding was implicated in the interaction. It was found that for fractions F2 and F3, no binding events with PLP were observed by ITC, irrespective of the oxygen level applied. Stronger binding events with PLP were observed for the F4 and F5 polyphenolic fractions, but interestingly, only in those prepared from wines which had oxygen treatment. Moreover, hydrophobic interaction and hydrogen bonding was detected just for the oxygen treatment for F4 and F5. Contrary to expectation, no binding with PLP could be detected for F4 and F5 from the control wine. Further investigation of the properties of the fractions was conducted to account for the differences observed, including their composition, hydrophobicity and aggregation. This presentation will provide new insights into the potential role of discrete polyphenolic classes in driving in-mouth sensory properties, like astringency, which might be elicited following binding with proline-rich salivary proteins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Jouin Alicia1, Falconer Robert J.2, Waterlot Aude3, Day Martin1, Schmidt Simon1 and Bindon Keren1

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia 
2Department of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
3Department of Food Science and Human Nutrition, Courtesy Faculty, Horticulture, Iowa State University, 2567 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA

Contact the author

Keywords

Tannins, Anthocyanins, Oxygen, Isothermal Titration Calorimetry, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Multi-trait selection in ancient grapevine varieties

The selection of ancient grapevine varieties aims to achieve genetic gains in several important traits that can make the variety more interesting for the objectives of the producers. Traditionally, yield and quality traits of the must have been considered for selection, but many others can be taken into account. Linear mixed models are fitted to the data to predict the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each evaluated trait, which will be the basis for selection.

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A geologic numeric mapping, with geophysic transects, of Marsannay’s vineyard (Burgundy, France)

Marsannay est l’appellation la plus septentrionale de la Côte de Nuits, à la limite Sud de Dijon. Elle regroupe trois villages, Chenôve, Marsannay-la-Côte et Couchey, et constitue l’appellation la plus vaste de la Côte de Nuits avec 315 hectares en A.O.C. Elle possède uniquement des niveaux d’appellations régionales et communales depuis 1987.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.