IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Abstract

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing. Polyphenols play an important role in red wine and exhibit a wide diversity in their structure and properties. They are responsible for wine colour, texture and taste (astringency, bitterness) and exhibit some health properties. The principal class of non-flavonoid polyphenolic compounds are the phenolic acids and stilbenes. Among the flavonoids, anthocyanins and tannins are the major structural classes. The aim of this study was to characterise the detailed response of wine polyphenolic structure and composition to an oxygen treatment applied during fermentation. A specific focus was to determine the interaction of discrete polyphenolic classes with poly-L-proline (PLP). A control Shiraz wine was prepared under reductive conditions during fermentation, in triplicate. To the same grape source, an aeration treatment was initiated on day 3 following a 1.8 °Bé decrease for 48 h at 5 L/min, also in triplicate.  After a 12-month ageing period, wines were fractionated where: F1 = Phenolic acids, F2 = flavan-3-ol monomers, F3 = flavan-3-ol oligomers, F4 = anthocyanins, pyranoanthocyanins; and F5 = polymeric proanthocyanidins, pigmented proanthocyanins and other derived complexes. The composition of fractions F1 to F4 was verified by LC-MS, and F5 was characterised by a combination of analytical techniques specific to proanthocyanidins. The interaction between the polyphenol fractions and PLP was measured by isothermal titration calorimetry (ITC). A strong binding interaction was observed between F1, the phenolic acids, and PLP by ITC, and was not affected by the oxygen treatment. In fact, a strong hydrophobic interaction and hydrogen bonding was implicated in the interaction. It was found that for fractions F2 and F3, no binding events with PLP were observed by ITC, irrespective of the oxygen level applied. Stronger binding events with PLP were observed for the F4 and F5 polyphenolic fractions, but interestingly, only in those prepared from wines which had oxygen treatment. Moreover, hydrophobic interaction and hydrogen bonding was detected just for the oxygen treatment for F4 and F5. Contrary to expectation, no binding with PLP could be detected for F4 and F5 from the control wine. Further investigation of the properties of the fractions was conducted to account for the differences observed, including their composition, hydrophobicity and aggregation. This presentation will provide new insights into the potential role of discrete polyphenolic classes in driving in-mouth sensory properties, like astringency, which might be elicited following binding with proline-rich salivary proteins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Jouin Alicia1, Falconer Robert J.2, Waterlot Aude3, Day Martin1, Schmidt Simon1 and Bindon Keren1

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia 
2Department of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
3Department of Food Science and Human Nutrition, Courtesy Faculty, Horticulture, Iowa State University, 2567 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA

Contact the author

Keywords

Tannins, Anthocyanins, Oxygen, Isothermal Titration Calorimetry, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard.

The vine and the hazelnut as elements of characterization of a terroir

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy).