IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Abstract

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing. Polyphenols play an important role in red wine and exhibit a wide diversity in their structure and properties. They are responsible for wine colour, texture and taste (astringency, bitterness) and exhibit some health properties. The principal class of non-flavonoid polyphenolic compounds are the phenolic acids and stilbenes. Among the flavonoids, anthocyanins and tannins are the major structural classes. The aim of this study was to characterise the detailed response of wine polyphenolic structure and composition to an oxygen treatment applied during fermentation. A specific focus was to determine the interaction of discrete polyphenolic classes with poly-L-proline (PLP). A control Shiraz wine was prepared under reductive conditions during fermentation, in triplicate. To the same grape source, an aeration treatment was initiated on day 3 following a 1.8 °Bé decrease for 48 h at 5 L/min, also in triplicate.  After a 12-month ageing period, wines were fractionated where: F1 = Phenolic acids, F2 = flavan-3-ol monomers, F3 = flavan-3-ol oligomers, F4 = anthocyanins, pyranoanthocyanins; and F5 = polymeric proanthocyanidins, pigmented proanthocyanins and other derived complexes. The composition of fractions F1 to F4 was verified by LC-MS, and F5 was characterised by a combination of analytical techniques specific to proanthocyanidins. The interaction between the polyphenol fractions and PLP was measured by isothermal titration calorimetry (ITC). A strong binding interaction was observed between F1, the phenolic acids, and PLP by ITC, and was not affected by the oxygen treatment. In fact, a strong hydrophobic interaction and hydrogen bonding was implicated in the interaction. It was found that for fractions F2 and F3, no binding events with PLP were observed by ITC, irrespective of the oxygen level applied. Stronger binding events with PLP were observed for the F4 and F5 polyphenolic fractions, but interestingly, only in those prepared from wines which had oxygen treatment. Moreover, hydrophobic interaction and hydrogen bonding was detected just for the oxygen treatment for F4 and F5. Contrary to expectation, no binding with PLP could be detected for F4 and F5 from the control wine. Further investigation of the properties of the fractions was conducted to account for the differences observed, including their composition, hydrophobicity and aggregation. This presentation will provide new insights into the potential role of discrete polyphenolic classes in driving in-mouth sensory properties, like astringency, which might be elicited following binding with proline-rich salivary proteins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Jouin Alicia1, Falconer Robert J.2, Waterlot Aude3, Day Martin1, Schmidt Simon1 and Bindon Keren1

1The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia 
2Department of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
3Department of Food Science and Human Nutrition, Courtesy Faculty, Horticulture, Iowa State University, 2567 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA

Contact the author

Keywords

Tannins, Anthocyanins, Oxygen, Isothermal Titration Calorimetry, Astringency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.