IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Abstract

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colangelo et al., 2018; Castro Marin et al., 2021). Therefore, the aim of this work was to assess the effect of a fungoid CH on pH, titratable acidity, and organic acids content in white wine and wine model solutions. A powdered sample of CH was added to each solution from 0 to 2.0 g/L and maintained under stirring (150 rpm) for 3h at room temperature. Before and after treatment, samples were analyzed for pH, titratable acidity, and organic acids content. Based on preliminary results, the CH treatment influenced both pH and titratable acidity: pH increased from 3,17±0,03 to 3,29±0,03, while titratable acidity decreased from 5,27±0,05 g/L to 4,58±0,04 g/L as tartaric acid equivalents. In detail, reductions in tartaric acid by 5-15% and in malic acid by 7-11% were observed. At the highest dosage (2.0 g/L) the CH produced a greater removal of tartaric acid (up to 202 mg per g of CH) than of malic acid (up to 63,45 mg/g of CH). These outcomes highlighted the valuable role of an allergen-free CH-based adsorbent as an alternative adjuvant for deacidification of white wines.

References

European Commission. 2011. European Commission Regulation (EU) 53/2011 of 21 January 2011 amending Regulation (EC) No 606/2009 laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. Official Journal of the European Union, L19/1-L19/6.
Colangelo, D., F. Torchio, D. M. De Faveri, and M. Lambri. 2018. The use of chitosan as alternative to bentonite for wine fining: effects on heat-stability, proteins, organic acids, colour, and volatile com- pounds in an aromatic white wine. Food Chemistry 264:301–9.
Castro Marín, A.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and perspectives of the use of chitosan in winemaking: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gabrielli Mario1, Romanini Elia1, Gruppi Alice1, Bassani Andrea1, Chinnici Fabio2, Castro Marin Antonio2 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

wine; chitosan; organic acids; pH; titratable acidity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.