IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Abstract

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colangelo et al., 2018; Castro Marin et al., 2021). Therefore, the aim of this work was to assess the effect of a fungoid CH on pH, titratable acidity, and organic acids content in white wine and wine model solutions. A powdered sample of CH was added to each solution from 0 to 2.0 g/L and maintained under stirring (150 rpm) for 3h at room temperature. Before and after treatment, samples were analyzed for pH, titratable acidity, and organic acids content. Based on preliminary results, the CH treatment influenced both pH and titratable acidity: pH increased from 3,17±0,03 to 3,29±0,03, while titratable acidity decreased from 5,27±0,05 g/L to 4,58±0,04 g/L as tartaric acid equivalents. In detail, reductions in tartaric acid by 5-15% and in malic acid by 7-11% were observed. At the highest dosage (2.0 g/L) the CH produced a greater removal of tartaric acid (up to 202 mg per g of CH) than of malic acid (up to 63,45 mg/g of CH). These outcomes highlighted the valuable role of an allergen-free CH-based adsorbent as an alternative adjuvant for deacidification of white wines.

References

European Commission. 2011. European Commission Regulation (EU) 53/2011 of 21 January 2011 amending Regulation (EC) No 606/2009 laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. Official Journal of the European Union, L19/1-L19/6.
Colangelo, D., F. Torchio, D. M. De Faveri, and M. Lambri. 2018. The use of chitosan as alternative to bentonite for wine fining: effects on heat-stability, proteins, organic acids, colour, and volatile com- pounds in an aromatic white wine. Food Chemistry 264:301–9.
Castro Marín, A.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and perspectives of the use of chitosan in winemaking: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gabrielli Mario1, Romanini Elia1, Gruppi Alice1, Bassani Andrea1, Chinnici Fabio2, Castro Marin Antonio2 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

wine; chitosan; organic acids; pH; titratable acidity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.

Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

The influence of two pre-veraison and post-veraison regulated deficit irrigation (RDI) strategies on yield and grape quality was analyzed during a two year period for mature grapevines (cv. Monastrell) in Southeastern of Spain

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.