IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Abstract

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colangelo et al., 2018; Castro Marin et al., 2021). Therefore, the aim of this work was to assess the effect of a fungoid CH on pH, titratable acidity, and organic acids content in white wine and wine model solutions. A powdered sample of CH was added to each solution from 0 to 2.0 g/L and maintained under stirring (150 rpm) for 3h at room temperature. Before and after treatment, samples were analyzed for pH, titratable acidity, and organic acids content. Based on preliminary results, the CH treatment influenced both pH and titratable acidity: pH increased from 3,17±0,03 to 3,29±0,03, while titratable acidity decreased from 5,27±0,05 g/L to 4,58±0,04 g/L as tartaric acid equivalents. In detail, reductions in tartaric acid by 5-15% and in malic acid by 7-11% were observed. At the highest dosage (2.0 g/L) the CH produced a greater removal of tartaric acid (up to 202 mg per g of CH) than of malic acid (up to 63,45 mg/g of CH). These outcomes highlighted the valuable role of an allergen-free CH-based adsorbent as an alternative adjuvant for deacidification of white wines.

References

European Commission. 2011. European Commission Regulation (EU) 53/2011 of 21 January 2011 amending Regulation (EC) No 606/2009 laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. Official Journal of the European Union, L19/1-L19/6.
Colangelo, D., F. Torchio, D. M. De Faveri, and M. Lambri. 2018. The use of chitosan as alternative to bentonite for wine fining: effects on heat-stability, proteins, organic acids, colour, and volatile com- pounds in an aromatic white wine. Food Chemistry 264:301–9.
Castro Marín, A.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and perspectives of the use of chitosan in winemaking: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gabrielli Mario1, Romanini Elia1, Gruppi Alice1, Bassani Andrea1, Chinnici Fabio2, Castro Marin Antonio2 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

wine; chitosan; organic acids; pH; titratable acidity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management.
In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate.

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality.
The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.

Chemical systems behind wine aroma perception: overview, genesis and evolution

This talk presents a revision of our knowledge and understanding of the role played by the different aroma chemicals in the positive aroma attributes of wine. A systematic approach to classifying the different aroma chemicals of wine is presented .