IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Abstract

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited. In a previous work, neutral oligosaccharide fractions isolated from wine were analyzed. The results present a composition of different monosaccharide units (hexose, pentose, uronic acid and deoxyhexose) and show the presence of several structures of oligo-rhamnogalacturonan type I substituted through the rhamnose moieties by arabinan and/or galactan chains.
The aim of this work is to explore new approaches for processing LC-HRMS data to identify these compounds containing repeating units (homologous series) such as arabinans or galactans.  The presented approach allows visualization of these series in the form of a Kendrick mass defect (KMD) plot to facilitate their characterization.
The chromatographic profiles obtained by LC-HRMS analysis of these fractions showed a poorly resolved bump, and the mass spectra were very complex consisting of mono, di, and tricharged ions peaks over a mass range between 500 and 2500. They allowed however to visualize numerous series formed by separated monocharged peaks of 132 m/z, or dicharged peaks of 66 m/z, i.e. a pentose unit.
The construction of the KMD plot is done with a change of scale for which the mass taken into account of (C5H8O4) is 132.0000 (nominal mass) instead of 132.0423 Da (exact mass). All masses of the spectrum are thus recalculated and called Kendrick masses (KM). The mass defect (KMD) for each peak of the spectrum is the difference between its Kendrick mass and its nominal mass. All compounds of the form R-(C5H8O4)n, R being a common radical, will have the same mass defect. The graphical representation, thus makes it possible to visualize the set of compounds that differ only by their number of pentose units on the same line.
In our case, the accuracy of the measurement at masses above m/z 1000 does not allow this calculation. This limitation was resolved by processing the data with the Compound DiscovererTM software (ThermoScientific) to obtain a list of monocharged masses, for which several crude formulas were proposed. A sorting of these crude formulas was carried out considering the possible ratios between number of carbons, oxygens and hydrogens. The exact masses of the 2045 remaining formulas were then calculated and allowed to draw the Kendrick mass defect plot.
Finally, the Kendrick diagram approach allows visualization of the homologous series of arabinoses. Identification hypotheses were proposed for 555 compounds attributed to oligo-rhamnogalacturonan type I, and its arabinans/galactans side chains degradation products. This study demonstrated the relevance of this analytical approach for the determination of the structure of wine oligosaccharides.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Meudec Emmanuelle1, Vallverdu-Queralt Anna2,3, Sommerer Nicolas1, Cheynier Véronique1, Williams Pascale1 and Doco Thierry1

1SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility, Montpellier, France <<

2Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
3CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain 

Contact the author

Keywords

HRMS, oligosaccharides, homologue series, Kendrick mass defect plot, KMD

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.