IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Abstract

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited. In a previous work, neutral oligosaccharide fractions isolated from wine were analyzed. The results present a composition of different monosaccharide units (hexose, pentose, uronic acid and deoxyhexose) and show the presence of several structures of oligo-rhamnogalacturonan type I substituted through the rhamnose moieties by arabinan and/or galactan chains.
The aim of this work is to explore new approaches for processing LC-HRMS data to identify these compounds containing repeating units (homologous series) such as arabinans or galactans.  The presented approach allows visualization of these series in the form of a Kendrick mass defect (KMD) plot to facilitate their characterization.
The chromatographic profiles obtained by LC-HRMS analysis of these fractions showed a poorly resolved bump, and the mass spectra were very complex consisting of mono, di, and tricharged ions peaks over a mass range between 500 and 2500. They allowed however to visualize numerous series formed by separated monocharged peaks of 132 m/z, or dicharged peaks of 66 m/z, i.e. a pentose unit.
The construction of the KMD plot is done with a change of scale for which the mass taken into account of (C5H8O4) is 132.0000 (nominal mass) instead of 132.0423 Da (exact mass). All masses of the spectrum are thus recalculated and called Kendrick masses (KM). The mass defect (KMD) for each peak of the spectrum is the difference between its Kendrick mass and its nominal mass. All compounds of the form R-(C5H8O4)n, R being a common radical, will have the same mass defect. The graphical representation, thus makes it possible to visualize the set of compounds that differ only by their number of pentose units on the same line.
In our case, the accuracy of the measurement at masses above m/z 1000 does not allow this calculation. This limitation was resolved by processing the data with the Compound DiscovererTM software (ThermoScientific) to obtain a list of monocharged masses, for which several crude formulas were proposed. A sorting of these crude formulas was carried out considering the possible ratios between number of carbons, oxygens and hydrogens. The exact masses of the 2045 remaining formulas were then calculated and allowed to draw the Kendrick mass defect plot.
Finally, the Kendrick diagram approach allows visualization of the homologous series of arabinoses. Identification hypotheses were proposed for 555 compounds attributed to oligo-rhamnogalacturonan type I, and its arabinans/galactans side chains degradation products. This study demonstrated the relevance of this analytical approach for the determination of the structure of wine oligosaccharides.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Meudec Emmanuelle1, Vallverdu-Queralt Anna2,3, Sommerer Nicolas1, Cheynier Véronique1, Williams Pascale1 and Doco Thierry1

1SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility, Montpellier, France <<

2Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
3CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain 

Contact the author

Keywords

HRMS, oligosaccharides, homologue series, Kendrick mass defect plot, KMD

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.