IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Abstract

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited. In a previous work, neutral oligosaccharide fractions isolated from wine were analyzed. The results present a composition of different monosaccharide units (hexose, pentose, uronic acid and deoxyhexose) and show the presence of several structures of oligo-rhamnogalacturonan type I substituted through the rhamnose moieties by arabinan and/or galactan chains.
The aim of this work is to explore new approaches for processing LC-HRMS data to identify these compounds containing repeating units (homologous series) such as arabinans or galactans.  The presented approach allows visualization of these series in the form of a Kendrick mass defect (KMD) plot to facilitate their characterization.
The chromatographic profiles obtained by LC-HRMS analysis of these fractions showed a poorly resolved bump, and the mass spectra were very complex consisting of mono, di, and tricharged ions peaks over a mass range between 500 and 2500. They allowed however to visualize numerous series formed by separated monocharged peaks of 132 m/z, or dicharged peaks of 66 m/z, i.e. a pentose unit.
The construction of the KMD plot is done with a change of scale for which the mass taken into account of (C5H8O4) is 132.0000 (nominal mass) instead of 132.0423 Da (exact mass). All masses of the spectrum are thus recalculated and called Kendrick masses (KM). The mass defect (KMD) for each peak of the spectrum is the difference between its Kendrick mass and its nominal mass. All compounds of the form R-(C5H8O4)n, R being a common radical, will have the same mass defect. The graphical representation, thus makes it possible to visualize the set of compounds that differ only by their number of pentose units on the same line.
In our case, the accuracy of the measurement at masses above m/z 1000 does not allow this calculation. This limitation was resolved by processing the data with the Compound DiscovererTM software (ThermoScientific) to obtain a list of monocharged masses, for which several crude formulas were proposed. A sorting of these crude formulas was carried out considering the possible ratios between number of carbons, oxygens and hydrogens. The exact masses of the 2045 remaining formulas were then calculated and allowed to draw the Kendrick mass defect plot.
Finally, the Kendrick diagram approach allows visualization of the homologous series of arabinoses. Identification hypotheses were proposed for 555 compounds attributed to oligo-rhamnogalacturonan type I, and its arabinans/galactans side chains degradation products. This study demonstrated the relevance of this analytical approach for the determination of the structure of wine oligosaccharides.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Meudec Emmanuelle1, Vallverdu-Queralt Anna2,3, Sommerer Nicolas1, Cheynier Véronique1, Williams Pascale1 and Doco Thierry1

1SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility, Montpellier, France <<

2Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
3CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain 

Contact the author

Keywords

HRMS, oligosaccharides, homologue series, Kendrick mass defect plot, KMD

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Predicting consumers’ organic wine consumption behaviour

Organic wine production and consumption is one of the sustainable practices contributing to a number of sustainable development goals (SDGs).

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;