IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Abstract

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited. In a previous work, neutral oligosaccharide fractions isolated from wine were analyzed. The results present a composition of different monosaccharide units (hexose, pentose, uronic acid and deoxyhexose) and show the presence of several structures of oligo-rhamnogalacturonan type I substituted through the rhamnose moieties by arabinan and/or galactan chains.
The aim of this work is to explore new approaches for processing LC-HRMS data to identify these compounds containing repeating units (homologous series) such as arabinans or galactans.  The presented approach allows visualization of these series in the form of a Kendrick mass defect (KMD) plot to facilitate their characterization.
The chromatographic profiles obtained by LC-HRMS analysis of these fractions showed a poorly resolved bump, and the mass spectra were very complex consisting of mono, di, and tricharged ions peaks over a mass range between 500 and 2500. They allowed however to visualize numerous series formed by separated monocharged peaks of 132 m/z, or dicharged peaks of 66 m/z, i.e. a pentose unit.
The construction of the KMD plot is done with a change of scale for which the mass taken into account of (C5H8O4) is 132.0000 (nominal mass) instead of 132.0423 Da (exact mass). All masses of the spectrum are thus recalculated and called Kendrick masses (KM). The mass defect (KMD) for each peak of the spectrum is the difference between its Kendrick mass and its nominal mass. All compounds of the form R-(C5H8O4)n, R being a common radical, will have the same mass defect. The graphical representation, thus makes it possible to visualize the set of compounds that differ only by their number of pentose units on the same line.
In our case, the accuracy of the measurement at masses above m/z 1000 does not allow this calculation. This limitation was resolved by processing the data with the Compound DiscovererTM software (ThermoScientific) to obtain a list of monocharged masses, for which several crude formulas were proposed. A sorting of these crude formulas was carried out considering the possible ratios between number of carbons, oxygens and hydrogens. The exact masses of the 2045 remaining formulas were then calculated and allowed to draw the Kendrick mass defect plot.
Finally, the Kendrick diagram approach allows visualization of the homologous series of arabinoses. Identification hypotheses were proposed for 555 compounds attributed to oligo-rhamnogalacturonan type I, and its arabinans/galactans side chains degradation products. This study demonstrated the relevance of this analytical approach for the determination of the structure of wine oligosaccharides.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Meudec Emmanuelle1, Vallverdu-Queralt Anna2,3, Sommerer Nicolas1, Cheynier Véronique1, Williams Pascale1 and Doco Thierry1

1SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility, Montpellier, France <<

2Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
3CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain 

Contact the author

Keywords

HRMS, oligosaccharides, homologue series, Kendrick mass defect plot, KMD

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.