IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Abstract

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited. In a previous work, neutral oligosaccharide fractions isolated from wine were analyzed. The results present a composition of different monosaccharide units (hexose, pentose, uronic acid and deoxyhexose) and show the presence of several structures of oligo-rhamnogalacturonan type I substituted through the rhamnose moieties by arabinan and/or galactan chains.
The aim of this work is to explore new approaches for processing LC-HRMS data to identify these compounds containing repeating units (homologous series) such as arabinans or galactans.  The presented approach allows visualization of these series in the form of a Kendrick mass defect (KMD) plot to facilitate their characterization.
The chromatographic profiles obtained by LC-HRMS analysis of these fractions showed a poorly resolved bump, and the mass spectra were very complex consisting of mono, di, and tricharged ions peaks over a mass range between 500 and 2500. They allowed however to visualize numerous series formed by separated monocharged peaks of 132 m/z, or dicharged peaks of 66 m/z, i.e. a pentose unit.
The construction of the KMD plot is done with a change of scale for which the mass taken into account of (C5H8O4) is 132.0000 (nominal mass) instead of 132.0423 Da (exact mass). All masses of the spectrum are thus recalculated and called Kendrick masses (KM). The mass defect (KMD) for each peak of the spectrum is the difference between its Kendrick mass and its nominal mass. All compounds of the form R-(C5H8O4)n, R being a common radical, will have the same mass defect. The graphical representation, thus makes it possible to visualize the set of compounds that differ only by their number of pentose units on the same line.
In our case, the accuracy of the measurement at masses above m/z 1000 does not allow this calculation. This limitation was resolved by processing the data with the Compound DiscovererTM software (ThermoScientific) to obtain a list of monocharged masses, for which several crude formulas were proposed. A sorting of these crude formulas was carried out considering the possible ratios between number of carbons, oxygens and hydrogens. The exact masses of the 2045 remaining formulas were then calculated and allowed to draw the Kendrick mass defect plot.
Finally, the Kendrick diagram approach allows visualization of the homologous series of arabinoses. Identification hypotheses were proposed for 555 compounds attributed to oligo-rhamnogalacturonan type I, and its arabinans/galactans side chains degradation products. This study demonstrated the relevance of this analytical approach for the determination of the structure of wine oligosaccharides.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Meudec Emmanuelle1, Vallverdu-Queralt Anna2,3, Sommerer Nicolas1, Cheynier Véronique1, Williams Pascale1 and Doco Thierry1

1SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France
INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility, Montpellier, France <<

2Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
3CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain 

Contact the author

Keywords

HRMS, oligosaccharides, homologue series, Kendrick mass defect plot, KMD

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].