IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The antioxidant properties of wine lees extracts in model wine

The antioxidant properties of wine lees extracts in model wine

Abstract

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry. Previously we demonstrated that the wine lees’ solid fraction could be submitted to a food-grade physical extraction method (autoclave, 20 min, 121°C) to yield yeast polysaccharides with proven foaming, emulsifying and wine stabilizing properties [1,2]. In this study, the autoclave extraction procedure was applied directly on lees from red winemaking. As a result, two extracts were obtained: the Total extract, namely the whole lees after autoclave containing the soluble and insoluble fractions; the Supernatant, containing only the soluble compounds released during extraction. The composition of the extracts in terms of protein, polysaccharides, glutathione, total thiols, and total polyphenol content, was determined by spectrophotometric and chromatographic analytical methods. Subsequently, the extract’s oxidative behavior was tested by dissolving them (0.5 g/L) in model wine (20% EtOH, 5 g/L tartaric acid, 5 mg/L Fe, 0.5 mg/L Cu) containing 30 mg/L free SO2 and 0.5g/L catechin. The O2 and SO2 consumption, color development (as a function of catechin degradation), and linear sweep voltammetry (LSV) behavior were investigated. The effect of the wine lees’ extracts was benchmarked against analogs extracts obtained from a lab-grown culture of the same yeast strain present in the wine lees. Samples prepared with the wine lees’ extracts showed a higher O2 and SO2 consumption rates compared to those prepared with the lab-grown yeast extracts. All extracts protected the catechin from oxidation, with the best protective action achieved by the Total wine lees extract. This extract, along with its analog from the lab-grown yeast culture, showed the greatest resistance to anodic oxidation according to LSV. The protective action on catechin displayed by all the extracts was not fully explainable by their content in antioxidant compounds as glutathione, thiols, and wine polyphenols. Interestingly, the fact that the best results were obtained using the Total extracts in which both the soluble (released polysaccharides) and insoluble (yeast cell walls) fractions were present, allowed to hypothesize that other compounds are involved in limiting the catechin oxidation. In this scenario, the candidates are the yeast membrane sterols as they possess an oxygen-consuming action, and yeast cell wall polysaccharides as they could bind to catechin thus making it unavailable for oxidation. To conclude, wine lees can be considered a novel source of yeast extract with potential oenological application also against quality-affecting oxidative reactions. If adopted on a large scale,  this wine lees valorization strategy would result in an improvement of the overall sustainability of the wine industry.

References

[1] De Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136, 110274.
[2] De Iseppi, A., Marangon, M., Lomolino, G., Crapisi, A., & Curioni, A. (2021). Red and white wine lees as a novel source of emulsifiers and foaming agents. LWT, 152, 112273.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De IseppiAlberto1, Curioni Andrea1,2, Marangon Matteo1,2, Invincibile Diletta3, Slaghenaufi Davide3 and Ugliano Maurizio3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Padua, Italy
2Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
3Department of Biotechnology, University of Verona, San Pietro in Cariano, Italy

Contact the author

Keywords

wine lees, wine oxidation, voltammetry, wine color, by-product valorization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo.