IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The antioxidant properties of wine lees extracts in model wine

The antioxidant properties of wine lees extracts in model wine

Abstract

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry. Previously we demonstrated that the wine lees’ solid fraction could be submitted to a food-grade physical extraction method (autoclave, 20 min, 121°C) to yield yeast polysaccharides with proven foaming, emulsifying and wine stabilizing properties [1,2]. In this study, the autoclave extraction procedure was applied directly on lees from red winemaking. As a result, two extracts were obtained: the Total extract, namely the whole lees after autoclave containing the soluble and insoluble fractions; the Supernatant, containing only the soluble compounds released during extraction. The composition of the extracts in terms of protein, polysaccharides, glutathione, total thiols, and total polyphenol content, was determined by spectrophotometric and chromatographic analytical methods. Subsequently, the extract’s oxidative behavior was tested by dissolving them (0.5 g/L) in model wine (20% EtOH, 5 g/L tartaric acid, 5 mg/L Fe, 0.5 mg/L Cu) containing 30 mg/L free SO2 and 0.5g/L catechin. The O2 and SO2 consumption, color development (as a function of catechin degradation), and linear sweep voltammetry (LSV) behavior were investigated. The effect of the wine lees’ extracts was benchmarked against analogs extracts obtained from a lab-grown culture of the same yeast strain present in the wine lees. Samples prepared with the wine lees’ extracts showed a higher O2 and SO2 consumption rates compared to those prepared with the lab-grown yeast extracts. All extracts protected the catechin from oxidation, with the best protective action achieved by the Total wine lees extract. This extract, along with its analog from the lab-grown yeast culture, showed the greatest resistance to anodic oxidation according to LSV. The protective action on catechin displayed by all the extracts was not fully explainable by their content in antioxidant compounds as glutathione, thiols, and wine polyphenols. Interestingly, the fact that the best results were obtained using the Total extracts in which both the soluble (released polysaccharides) and insoluble (yeast cell walls) fractions were present, allowed to hypothesize that other compounds are involved in limiting the catechin oxidation. In this scenario, the candidates are the yeast membrane sterols as they possess an oxygen-consuming action, and yeast cell wall polysaccharides as they could bind to catechin thus making it unavailable for oxidation. To conclude, wine lees can be considered a novel source of yeast extract with potential oenological application also against quality-affecting oxidative reactions. If adopted on a large scale,  this wine lees valorization strategy would result in an improvement of the overall sustainability of the wine industry.

References

[1] De Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136, 110274.
[2] De Iseppi, A., Marangon, M., Lomolino, G., Crapisi, A., & Curioni, A. (2021). Red and white wine lees as a novel source of emulsifiers and foaming agents. LWT, 152, 112273.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De IseppiAlberto1, Curioni Andrea1,2, Marangon Matteo1,2, Invincibile Diletta3, Slaghenaufi Davide3 and Ugliano Maurizio3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Padua, Italy
2Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
3Department of Biotechnology, University of Verona, San Pietro in Cariano, Italy

Contact the author

Keywords

wine lees, wine oxidation, voltammetry, wine color, by-product valorization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates.

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified.

White grape juice consumption reduce muscle damage parameters in combat athletes

Introduction and objective: the practice of physical exercises in an exhaustive way is related to damage. Muay thai (mt) is a high-intensity sport that demands agility, strength and power, which can lead to fatigue and muscle damage. Grape juice is rich in carbohydrates and antioxidants, which can delay the onset of fatigue and muscle damage. The objective of the study was to evaluate the impact of white grape juice consumption, during 14 days, on muscle damage parameters in tm athletes.