IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Deciphering the color of rosé wines using polyphenol targeted metabolomics

Deciphering the color of rosé wines using polyphenol targeted metabolomics

Abstract

The color of rosés wines is extremely diverse  and a key element in their marketing. It is  due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making. To explore the link between composition and color, 268 commercial rosé wines were analyzed by ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis in the MRM (multiple reaction monitoring) mode [1] and their color characterized using spectrophotometry. The concentration of 125 phenolic compounds was thus determined and related to color parameters using chemometrics [2]. Color intensity is primarily determined by the extent of polyphenol extraction from the grapes. However, different compositions characterize the different color styles. Dark rosé wines contain high concentrations of anthocyanins and flavanols and their color, like that of red wines, is attributable to these molecules and their reaction products. In contrast, major phenolic compounds in light rosé wines are hydroxycinnamic acids and their salmon shade is mostly due to phenylpyranoanthocyanins and carboxypyranoanthocyanin pigments, resulting from reactions of anthocyanins, respectively with these phenolic acids and with pyruvic acid, a yeast metabolite. Redness of intermediate color wines is associated to anthocyanins and carboxypyranoanthocyanins while yellowness seems related to oxidation.The same approach was applied to monitor color and composition changes during fermentation of six rosé musts made from Grenache, Cinsault and Syrah grapes. Hydroxycinnamic acids were the major phenolic compounds in Grenache and Cinsault musts while the Syrah musts showed higher concentrations of anthocyanins and flavanols, indicating that polyphenol extraction is not only related to maceration conditions but also depends on varietal characteristics. These differences resulted in different proportions of derived pigments as observed on the rosé wine collection [2]. Comparison of the spectrophotometric and MRM data indicated that the majority of phenolic compounds in the Cinsault musts were not among the compounds targeted by MRM. Size exclusion chromatography (SEC) analysis of the musts showed different profiles for the three varieties, Cinsault musts containing large proportions of oligomeric compounds likely derived from hydroxycinnamates. These larger molecular weight compounds were no longer detected after fermentation and were partly recovered from the yeast lees. Comparison of the SEC profiles obtained at different wavelengths also suggest that pigments of Cinsault and Grenache are hydroxycinnamic acid derivatives, likely resulting from enzymatic oxidation. Non targeted metabolomics approaches provided further information on these pigments.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cheynier, Véronique1, Leborgne Cécile2, Ducasse Marie-Agnès3, Meudec Emmanuelle1, Verbaere Arnaud1, Sommerer Nicolas1, Boulet Jean-Claude1, Masson Gilles2 and Mouret Jean-Roch11

SPO, INRAE, Univ Montpellier, Institut Agro, INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility
2 SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France
3 Institut Français de la Vigne et du Vin, UMT OENOTYPAGE, Domaine de Pech Rouge, Gruissan, France

Contact the author

Keywords

UHPLC-MS/MS, polyphenols, rosé wines, color, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Vineyard altitude as a climate change adaptation strategy and its effect on Riesling during grapes and wine composition during ripening

Climate is one of the main drivers of spatial and temporal variability in grapevine physiology and therefore a key determinant of grape composition and final wine value. The world has warmed 1.1 °C since pre-industrial times, and the latest IPCC report indicates an additional 0.5 to 1.3 °C of warming by mid-century with continental locations warming at a greater rate than the oceans.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.