IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Deciphering the color of rosé wines using polyphenol targeted metabolomics

Deciphering the color of rosé wines using polyphenol targeted metabolomics

Abstract

The color of rosés wines is extremely diverse  and a key element in their marketing. It is  due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making. To explore the link between composition and color, 268 commercial rosé wines were analyzed by ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis in the MRM (multiple reaction monitoring) mode [1] and their color characterized using spectrophotometry. The concentration of 125 phenolic compounds was thus determined and related to color parameters using chemometrics [2]. Color intensity is primarily determined by the extent of polyphenol extraction from the grapes. However, different compositions characterize the different color styles. Dark rosé wines contain high concentrations of anthocyanins and flavanols and their color, like that of red wines, is attributable to these molecules and their reaction products. In contrast, major phenolic compounds in light rosé wines are hydroxycinnamic acids and their salmon shade is mostly due to phenylpyranoanthocyanins and carboxypyranoanthocyanin pigments, resulting from reactions of anthocyanins, respectively with these phenolic acids and with pyruvic acid, a yeast metabolite. Redness of intermediate color wines is associated to anthocyanins and carboxypyranoanthocyanins while yellowness seems related to oxidation.The same approach was applied to monitor color and composition changes during fermentation of six rosé musts made from Grenache, Cinsault and Syrah grapes. Hydroxycinnamic acids were the major phenolic compounds in Grenache and Cinsault musts while the Syrah musts showed higher concentrations of anthocyanins and flavanols, indicating that polyphenol extraction is not only related to maceration conditions but also depends on varietal characteristics. These differences resulted in different proportions of derived pigments as observed on the rosé wine collection [2]. Comparison of the spectrophotometric and MRM data indicated that the majority of phenolic compounds in the Cinsault musts were not among the compounds targeted by MRM. Size exclusion chromatography (SEC) analysis of the musts showed different profiles for the three varieties, Cinsault musts containing large proportions of oligomeric compounds likely derived from hydroxycinnamates. These larger molecular weight compounds were no longer detected after fermentation and were partly recovered from the yeast lees. Comparison of the SEC profiles obtained at different wavelengths also suggest that pigments of Cinsault and Grenache are hydroxycinnamic acid derivatives, likely resulting from enzymatic oxidation. Non targeted metabolomics approaches provided further information on these pigments.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cheynier, Véronique1, Leborgne Cécile2, Ducasse Marie-Agnès3, Meudec Emmanuelle1, Verbaere Arnaud1, Sommerer Nicolas1, Boulet Jean-Claude1, Masson Gilles2 and Mouret Jean-Roch11

SPO, INRAE, Univ Montpellier, Institut Agro, INRAE, PROBE research infrastructure, PFP Polyphenol Analytical Facility
2 SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France
3 Institut Français de la Vigne et du Vin, UMT OENOTYPAGE, Domaine de Pech Rouge, Gruissan, France

Contact the author

Keywords

UHPLC-MS/MS, polyphenols, rosé wines, color, chemometrics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).