IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Abstract

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay. Phenylmethanethiol (benzyl mercaptan) is a potent sulfur-containing volatile aroma compound and is thought to be responsible for struck flint character in wine. However, few studies targeting this character have been done. To address this, over 70 commercially available white wines, mostly Chardonnay, were chemically analysed to establish the variability of phenylmethanethiol, and the wines were assessed by a sensory panel to indicate whether there might be a transition from struck flint aroma to a less pleasant sulfurous/burnt aroma. Interestingly, another potent sulfur-containing aroma compound, 2-furylmethanethiol (furfuryl thiol), was also found in the wines and was at particularly high concentration in wines suggested as having high struck flint aroma. 2-Furylmethanethiol has previously been shown to form in white wines during alcoholic fermentation in the barrel from the furan-2-carbaldehyde (furfural) released by toasted oak staves reacting with the hydrogen sulfide produced by yeast. This survey highlighted that both phenylmethanethiol and 2-furylmethanethiol are linked to struck flint aroma but when higher levels of 2-furylmethanethiol are present, the character might tend toward sulfurous/burnt.

 There was also no information available on the effects of winemaking techniques and commonly used winemaking additives on the formation of phenylmethanethiol. Further investigations in model fermentations of its potential precursors benzaldehyde and hydrogen sulfide were conducted. Wine yeast strains that produced high concentrations of hydrogen sulfide resulted in higher concentrations of phenylmethanethiol during fermentation of a synthetic grape must and increasing concentrations of ammonia (YAN) promoted the formation of phenylmethanethiol by yeast during fermentation. Thus, different winemaking parameters could be used to modulate the concentrations of phenylmethanethiol in wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

T. E. Siebert1*, D. Espinase Nandorfy1,2, A. G. Cordente1, L. Pisaniello1, F. T. Watson1, S. R. Barter1, D. Likos1, A. C. Kulcsar1, I. L. Francis1, and M. Z. Bekker1

1The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia 
CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University 

Contact the author

Keywords

thiols, sensory, fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).