IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Abstract

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay. Phenylmethanethiol (benzyl mercaptan) is a potent sulfur-containing volatile aroma compound and is thought to be responsible for struck flint character in wine. However, few studies targeting this character have been done. To address this, over 70 commercially available white wines, mostly Chardonnay, were chemically analysed to establish the variability of phenylmethanethiol, and the wines were assessed by a sensory panel to indicate whether there might be a transition from struck flint aroma to a less pleasant sulfurous/burnt aroma. Interestingly, another potent sulfur-containing aroma compound, 2-furylmethanethiol (furfuryl thiol), was also found in the wines and was at particularly high concentration in wines suggested as having high struck flint aroma. 2-Furylmethanethiol has previously been shown to form in white wines during alcoholic fermentation in the barrel from the furan-2-carbaldehyde (furfural) released by toasted oak staves reacting with the hydrogen sulfide produced by yeast. This survey highlighted that both phenylmethanethiol and 2-furylmethanethiol are linked to struck flint aroma but when higher levels of 2-furylmethanethiol are present, the character might tend toward sulfurous/burnt.

 There was also no information available on the effects of winemaking techniques and commonly used winemaking additives on the formation of phenylmethanethiol. Further investigations in model fermentations of its potential precursors benzaldehyde and hydrogen sulfide were conducted. Wine yeast strains that produced high concentrations of hydrogen sulfide resulted in higher concentrations of phenylmethanethiol during fermentation of a synthetic grape must and increasing concentrations of ammonia (YAN) promoted the formation of phenylmethanethiol by yeast during fermentation. Thus, different winemaking parameters could be used to modulate the concentrations of phenylmethanethiol in wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

T. E. Siebert1*, D. Espinase Nandorfy1,2, A. G. Cordente1, L. Pisaniello1, F. T. Watson1, S. R. Barter1, D. Likos1, A. C. Kulcsar1, I. L. Francis1, and M. Z. Bekker1

1The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia 
CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University 

Contact the author

Keywords

thiols, sensory, fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).