IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Abstract

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay. Phenylmethanethiol (benzyl mercaptan) is a potent sulfur-containing volatile aroma compound and is thought to be responsible for struck flint character in wine. However, few studies targeting this character have been done. To address this, over 70 commercially available white wines, mostly Chardonnay, were chemically analysed to establish the variability of phenylmethanethiol, and the wines were assessed by a sensory panel to indicate whether there might be a transition from struck flint aroma to a less pleasant sulfurous/burnt aroma. Interestingly, another potent sulfur-containing aroma compound, 2-furylmethanethiol (furfuryl thiol), was also found in the wines and was at particularly high concentration in wines suggested as having high struck flint aroma. 2-Furylmethanethiol has previously been shown to form in white wines during alcoholic fermentation in the barrel from the furan-2-carbaldehyde (furfural) released by toasted oak staves reacting with the hydrogen sulfide produced by yeast. This survey highlighted that both phenylmethanethiol and 2-furylmethanethiol are linked to struck flint aroma but when higher levels of 2-furylmethanethiol are present, the character might tend toward sulfurous/burnt.

 There was also no information available on the effects of winemaking techniques and commonly used winemaking additives on the formation of phenylmethanethiol. Further investigations in model fermentations of its potential precursors benzaldehyde and hydrogen sulfide were conducted. Wine yeast strains that produced high concentrations of hydrogen sulfide resulted in higher concentrations of phenylmethanethiol during fermentation of a synthetic grape must and increasing concentrations of ammonia (YAN) promoted the formation of phenylmethanethiol by yeast during fermentation. Thus, different winemaking parameters could be used to modulate the concentrations of phenylmethanethiol in wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

T. E. Siebert1*, D. Espinase Nandorfy1,2, A. G. Cordente1, L. Pisaniello1, F. T. Watson1, S. R. Barter1, D. Likos1, A. C. Kulcsar1, I. L. Francis1, and M. Z. Bekker1

1The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia 
CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University 

Contact the author

Keywords

thiols, sensory, fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

What drives Indications of Geographical Origin protection and governance mechanisms in the U.S. and European contexts? A contribution of the social sciences

There are fundamentally two different ways in which indications of geographical origin (igos) can be protected. The us approach favors the pre-existing trademark system through collective marks (cms), while the eu approach favors a maximalist approach via a sui generis system which promotes appellations of origin (aos). A consensus however emerges regarding the fundamental protection of origin against misleading, confusing and dilutive uses. Previous literature discusses these competing igo logics from historical, legal and international trade perspectives. In this paper, we depart from the field of social sciences, in particular from recent advancements in the well-established literature on proximities, in order to provide a reflection on the different logics underpinning the aos and cms systems.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated.