IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Abstract

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay. Phenylmethanethiol (benzyl mercaptan) is a potent sulfur-containing volatile aroma compound and is thought to be responsible for struck flint character in wine. However, few studies targeting this character have been done. To address this, over 70 commercially available white wines, mostly Chardonnay, were chemically analysed to establish the variability of phenylmethanethiol, and the wines were assessed by a sensory panel to indicate whether there might be a transition from struck flint aroma to a less pleasant sulfurous/burnt aroma. Interestingly, another potent sulfur-containing aroma compound, 2-furylmethanethiol (furfuryl thiol), was also found in the wines and was at particularly high concentration in wines suggested as having high struck flint aroma. 2-Furylmethanethiol has previously been shown to form in white wines during alcoholic fermentation in the barrel from the furan-2-carbaldehyde (furfural) released by toasted oak staves reacting with the hydrogen sulfide produced by yeast. This survey highlighted that both phenylmethanethiol and 2-furylmethanethiol are linked to struck flint aroma but when higher levels of 2-furylmethanethiol are present, the character might tend toward sulfurous/burnt.

 There was also no information available on the effects of winemaking techniques and commonly used winemaking additives on the formation of phenylmethanethiol. Further investigations in model fermentations of its potential precursors benzaldehyde and hydrogen sulfide were conducted. Wine yeast strains that produced high concentrations of hydrogen sulfide resulted in higher concentrations of phenylmethanethiol during fermentation of a synthetic grape must and increasing concentrations of ammonia (YAN) promoted the formation of phenylmethanethiol by yeast during fermentation. Thus, different winemaking parameters could be used to modulate the concentrations of phenylmethanethiol in wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

T. E. Siebert1*, D. Espinase Nandorfy1,2, A. G. Cordente1, L. Pisaniello1, F. T. Watson1, S. R. Barter1, D. Likos1, A. C. Kulcsar1, I. L. Francis1, and M. Z. Bekker1

1The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia 
CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University 

Contact the author

Keywords

thiols, sensory, fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

Decline of new vineyards in Southern Spain

In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.