IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Abstract

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay. Phenylmethanethiol (benzyl mercaptan) is a potent sulfur-containing volatile aroma compound and is thought to be responsible for struck flint character in wine. However, few studies targeting this character have been done. To address this, over 70 commercially available white wines, mostly Chardonnay, were chemically analysed to establish the variability of phenylmethanethiol, and the wines were assessed by a sensory panel to indicate whether there might be a transition from struck flint aroma to a less pleasant sulfurous/burnt aroma. Interestingly, another potent sulfur-containing aroma compound, 2-furylmethanethiol (furfuryl thiol), was also found in the wines and was at particularly high concentration in wines suggested as having high struck flint aroma. 2-Furylmethanethiol has previously been shown to form in white wines during alcoholic fermentation in the barrel from the furan-2-carbaldehyde (furfural) released by toasted oak staves reacting with the hydrogen sulfide produced by yeast. This survey highlighted that both phenylmethanethiol and 2-furylmethanethiol are linked to struck flint aroma but when higher levels of 2-furylmethanethiol are present, the character might tend toward sulfurous/burnt.

 There was also no information available on the effects of winemaking techniques and commonly used winemaking additives on the formation of phenylmethanethiol. Further investigations in model fermentations of its potential precursors benzaldehyde and hydrogen sulfide were conducted. Wine yeast strains that produced high concentrations of hydrogen sulfide resulted in higher concentrations of phenylmethanethiol during fermentation of a synthetic grape must and increasing concentrations of ammonia (YAN) promoted the formation of phenylmethanethiol by yeast during fermentation. Thus, different winemaking parameters could be used to modulate the concentrations of phenylmethanethiol in wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

T. E. Siebert1*, D. Espinase Nandorfy1,2, A. G. Cordente1, L. Pisaniello1, F. T. Watson1, S. R. Barter1, D. Likos1, A. C. Kulcsar1, I. L. Francis1, and M. Z. Bekker1

1The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia 
CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University 

Contact the author

Keywords

thiols, sensory, fermentation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Vite e territorio. Il caso della Franciacorta nel medioevo

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.