IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Abstract

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes. In must, wine or even yeast, glutathione can be found under its reduced (GSH) or oxidized form (GSSG) [1,2].  Many studies have proven that GSH plays a key role in wine quality and longevity [3]. It is well proved that during winemaking, particularly during wine aging on lees, the GSH concentration in wine increases and protects it from oxidation phenomena [4]. Nevertheless, the amount of GSH present in wine lees is often unknown and the choice of operating conditions (amount of lees and aging time) remains empirical. The aim of this study was to propose an optimized method to extract and to quantify the GSH potential of wine lees. In order to assess the main parameters affecting GSH extraction, the type of solvent, extraction time and solid-liquid ratio were investigated. A Response Surface Methodology (RSM) by Doehlert matrix, an useful tool for optimizing specific compound extraction, was applied to optimize GSH extraction from white lees. The results show that water is a suitable solvent for GSH extraction and that the solid-liquid ratio (< 15 g/L) and the extraction time (< 1h) are the main parameters that influence GSH extraction from lees. This approach was extended to the analysis of GSH present in enological product as yeast derivatives. This work in very helpful for developing a cost effective process for extraction of GSH from winemaking wastes as well as to analyze the GSH evolution in lees during winemaking in order to control operating condition of wine aging.

References

[1] Amir B.A.  and Ghobadi S., 2016. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Science, 146:163-73.
[2] Foyer C. and Noctor G., 2005 . Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environemental, 28, 8: 1056-1071.
[3] Pons A., Lavigne V., Darriet P. and  Dubourdieu D., 2015. Glutathione preservation during winemaking with vitis vinifera white varieties: example of sauvignon blanc grapes. American Journal of Enology and Viticulture, 66- 2: 187-194.
[4] Lavigne, V. and Dubourdieu, D. 2002. Role of glutathione on development of aroma defects in dry white wines.  In 13th International Enology Symposium (Montpellier).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Ren Yi1, Hastoy Xavier1 and Redon Pascaline 

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO)1366 Univ. Bordeaux, INRAE, Bordeaux INP

Contact the author

Keywords

Glutathione, Extraction, factorial design, Doelhert matrix, wine lees

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir e DOC: riflessi produttivi e commercial

Da dove scaturisce tutto l’interesse attuale per il terroir? Si provi, per dare risposta a questo quesito, ad immaginare il vino avulso dalla sua dimensione territoriale. Cosa si otterrebbe? Un vino bianco, un vino rosso o quant’altro, ma comunque un prodotto privo di conno­tazione geografica, di premesse storiche, di radici tradizionali, di potere evocativo, di iden­tità e di personalità.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).