IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Abstract

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes. In must, wine or even yeast, glutathione can be found under its reduced (GSH) or oxidized form (GSSG) [1,2].  Many studies have proven that GSH plays a key role in wine quality and longevity [3]. It is well proved that during winemaking, particularly during wine aging on lees, the GSH concentration in wine increases and protects it from oxidation phenomena [4]. Nevertheless, the amount of GSH present in wine lees is often unknown and the choice of operating conditions (amount of lees and aging time) remains empirical. The aim of this study was to propose an optimized method to extract and to quantify the GSH potential of wine lees. In order to assess the main parameters affecting GSH extraction, the type of solvent, extraction time and solid-liquid ratio were investigated. A Response Surface Methodology (RSM) by Doehlert matrix, an useful tool for optimizing specific compound extraction, was applied to optimize GSH extraction from white lees. The results show that water is a suitable solvent for GSH extraction and that the solid-liquid ratio (< 15 g/L) and the extraction time (< 1h) are the main parameters that influence GSH extraction from lees. This approach was extended to the analysis of GSH present in enological product as yeast derivatives. This work in very helpful for developing a cost effective process for extraction of GSH from winemaking wastes as well as to analyze the GSH evolution in lees during winemaking in order to control operating condition of wine aging.

References

[1] Amir B.A.  and Ghobadi S., 2016. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Science, 146:163-73.
[2] Foyer C. and Noctor G., 2005 . Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environemental, 28, 8: 1056-1071.
[3] Pons A., Lavigne V., Darriet P. and  Dubourdieu D., 2015. Glutathione preservation during winemaking with vitis vinifera white varieties: example of sauvignon blanc grapes. American Journal of Enology and Viticulture, 66- 2: 187-194.
[4] Lavigne, V. and Dubourdieu, D. 2002. Role of glutathione on development of aroma defects in dry white wines.  In 13th International Enology Symposium (Montpellier).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Ren Yi1, Hastoy Xavier1 and Redon Pascaline 

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO)1366 Univ. Bordeaux, INRAE, Bordeaux INP

Contact the author

Keywords

Glutathione, Extraction, factorial design, Doelhert matrix, wine lees

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

The importance of free trade agreements and non tariffs measures in a context of resurgent retaliatory trade measures against wine

Most of the issues surrounding trade in wine and spirits focus on the fight against non-tariff measures.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.