IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Abstract

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes. In must, wine or even yeast, glutathione can be found under its reduced (GSH) or oxidized form (GSSG) [1,2].  Many studies have proven that GSH plays a key role in wine quality and longevity [3]. It is well proved that during winemaking, particularly during wine aging on lees, the GSH concentration in wine increases and protects it from oxidation phenomena [4]. Nevertheless, the amount of GSH present in wine lees is often unknown and the choice of operating conditions (amount of lees and aging time) remains empirical. The aim of this study was to propose an optimized method to extract and to quantify the GSH potential of wine lees. In order to assess the main parameters affecting GSH extraction, the type of solvent, extraction time and solid-liquid ratio were investigated. A Response Surface Methodology (RSM) by Doehlert matrix, an useful tool for optimizing specific compound extraction, was applied to optimize GSH extraction from white lees. The results show that water is a suitable solvent for GSH extraction and that the solid-liquid ratio (< 15 g/L) and the extraction time (< 1h) are the main parameters that influence GSH extraction from lees. This approach was extended to the analysis of GSH present in enological product as yeast derivatives. This work in very helpful for developing a cost effective process for extraction of GSH from winemaking wastes as well as to analyze the GSH evolution in lees during winemaking in order to control operating condition of wine aging.

References

[1] Amir B.A.  and Ghobadi S., 2016. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Science, 146:163-73.
[2] Foyer C. and Noctor G., 2005 . Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environemental, 28, 8: 1056-1071.
[3] Pons A., Lavigne V., Darriet P. and  Dubourdieu D., 2015. Glutathione preservation during winemaking with vitis vinifera white varieties: example of sauvignon blanc grapes. American Journal of Enology and Viticulture, 66- 2: 187-194.
[4] Lavigne, V. and Dubourdieu, D. 2002. Role of glutathione on development of aroma defects in dry white wines.  In 13th International Enology Symposium (Montpellier).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Ren Yi1, Hastoy Xavier1 and Redon Pascaline 

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO)1366 Univ. Bordeaux, INRAE, Bordeaux INP

Contact the author

Keywords

Glutathione, Extraction, factorial design, Doelhert matrix, wine lees

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

“Terroir” has been acknowledged as an important factor in wine quality
and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human
factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

The need to classify the vineyards of an area according to the quality of its wines is not recent, but it is only in the last ten years that studies on the suitability of different areas for the cultivation of vineyard take on an integrated and interdisciplinary character (Boselli, 1991). The definition of the suitability of the environment is thus obtained by making the climatic, pedological, topographical and cultural information interact with the vegetative, productive and qualitative expression of the grape varieties.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.