IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Abstract

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes. In must, wine or even yeast, glutathione can be found under its reduced (GSH) or oxidized form (GSSG) [1,2].  Many studies have proven that GSH plays a key role in wine quality and longevity [3]. It is well proved that during winemaking, particularly during wine aging on lees, the GSH concentration in wine increases and protects it from oxidation phenomena [4]. Nevertheless, the amount of GSH present in wine lees is often unknown and the choice of operating conditions (amount of lees and aging time) remains empirical. The aim of this study was to propose an optimized method to extract and to quantify the GSH potential of wine lees. In order to assess the main parameters affecting GSH extraction, the type of solvent, extraction time and solid-liquid ratio were investigated. A Response Surface Methodology (RSM) by Doehlert matrix, an useful tool for optimizing specific compound extraction, was applied to optimize GSH extraction from white lees. The results show that water is a suitable solvent for GSH extraction and that the solid-liquid ratio (< 15 g/L) and the extraction time (< 1h) are the main parameters that influence GSH extraction from lees. This approach was extended to the analysis of GSH present in enological product as yeast derivatives. This work in very helpful for developing a cost effective process for extraction of GSH from winemaking wastes as well as to analyze the GSH evolution in lees during winemaking in order to control operating condition of wine aging.

References

[1] Amir B.A.  and Ghobadi S., 2016. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Science, 146:163-73.
[2] Foyer C. and Noctor G., 2005 . Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environemental, 28, 8: 1056-1071.
[3] Pons A., Lavigne V., Darriet P. and  Dubourdieu D., 2015. Glutathione preservation during winemaking with vitis vinifera white varieties: example of sauvignon blanc grapes. American Journal of Enology and Viticulture, 66- 2: 187-194.
[4] Lavigne, V. and Dubourdieu, D. 2002. Role of glutathione on development of aroma defects in dry white wines.  In 13th International Enology Symposium (Montpellier).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Ren Yi1, Hastoy Xavier1 and Redon Pascaline 

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO)1366 Univ. Bordeaux, INRAE, Bordeaux INP

Contact the author

Keywords

Glutathione, Extraction, factorial design, Doelhert matrix, wine lees

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].