IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

Abstract

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation. The MW cause the migration of ions and dipoles generate frictional forces increasing the temperature. This thermal energy can break bonds between compounds, being able to favor the breakage of the cell wall of the grape skin. This would favor the extraction of compounds of interest, allowing wineries to reduce maceration time and increasing their production capacity. In this context, our work focuses on studying the capacity of MW to favor the extraction of phenolic compounds from red grapes of the Cabernet Sauvignon variety in order to obtain wines of high color quality with short maceration times.For this, the chromatic parameters and phenolic composition of wines elaborated with MW treated grapes were studied and compared with a control vinification. This test was carried out using two different maceration times: 72 hours and 7 days. The MW treatment in all cases consisted of applications lasting 12 min at 700 W using a domestic oven avoiding temperature increases above 40ºC. All assays were performed in triplicate and wines were analyzed by spectrophotometry and high-performance liquid chromatography at the time of bottling.The results obtained showed an increase in the content of phenolic compounds and color intensity (CI) in the wines obtained from grapes treated with microwaves respect to their controls for both maceration times (12% and 15% increase in CI, respectively). No significant differences were observed for none of the chromatic parameters studied between the wine obtained after a MW treatment and macerated for 72 hours and the control wine with a four-day longer maceration, being of special interest the CI and the total polyphenol index (TPI) (CI: 16.16 vs 17.18 and TPI: 45.22 vs 47.05, respectively).For this reason, this study shows the possibility of reducing the maceration time without losing quality in the wines obtained when MW are used.

References

[1] Muñoz García, R.; Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Coello, M.S. (2021). Foods, 10, 1164.
[2] Carew, A.L.; Gill,W.; Close, D.C.; Dambergs, R.G. (2014). Am. J. Enol. Vitic., 65, 401–406.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Munoz-García Raquel2, Díaz-Maroto Mª Consuelo2, Pérez-Coello Mª Soledad2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia.
2Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Contact the author

Keywords

Microwave, Chromatics, Polyphenols, Maceration, Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Soil electrical resistivity, a new and revealing technique for precision viticulture

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv.

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.