IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

Abstract

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation. The MW cause the migration of ions and dipoles generate frictional forces increasing the temperature. This thermal energy can break bonds between compounds, being able to favor the breakage of the cell wall of the grape skin. This would favor the extraction of compounds of interest, allowing wineries to reduce maceration time and increasing their production capacity. In this context, our work focuses on studying the capacity of MW to favor the extraction of phenolic compounds from red grapes of the Cabernet Sauvignon variety in order to obtain wines of high color quality with short maceration times.For this, the chromatic parameters and phenolic composition of wines elaborated with MW treated grapes were studied and compared with a control vinification. This test was carried out using two different maceration times: 72 hours and 7 days. The MW treatment in all cases consisted of applications lasting 12 min at 700 W using a domestic oven avoiding temperature increases above 40ºC. All assays were performed in triplicate and wines were analyzed by spectrophotometry and high-performance liquid chromatography at the time of bottling.The results obtained showed an increase in the content of phenolic compounds and color intensity (CI) in the wines obtained from grapes treated with microwaves respect to their controls for both maceration times (12% and 15% increase in CI, respectively). No significant differences were observed for none of the chromatic parameters studied between the wine obtained after a MW treatment and macerated for 72 hours and the control wine with a four-day longer maceration, being of special interest the CI and the total polyphenol index (TPI) (CI: 16.16 vs 17.18 and TPI: 45.22 vs 47.05, respectively).For this reason, this study shows the possibility of reducing the maceration time without losing quality in the wines obtained when MW are used.

References

[1] Muñoz García, R.; Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Coello, M.S. (2021). Foods, 10, 1164.
[2] Carew, A.L.; Gill,W.; Close, D.C.; Dambergs, R.G. (2014). Am. J. Enol. Vitic., 65, 401–406.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Munoz-García Raquel2, Díaz-Maroto Mª Consuelo2, Pérez-Coello Mª Soledad2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia.
2Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Contact the author

Keywords

Microwave, Chromatics, Polyphenols, Maceration, Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.