IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

Abstract

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation. The MW cause the migration of ions and dipoles generate frictional forces increasing the temperature. This thermal energy can break bonds between compounds, being able to favor the breakage of the cell wall of the grape skin. This would favor the extraction of compounds of interest, allowing wineries to reduce maceration time and increasing their production capacity. In this context, our work focuses on studying the capacity of MW to favor the extraction of phenolic compounds from red grapes of the Cabernet Sauvignon variety in order to obtain wines of high color quality with short maceration times.For this, the chromatic parameters and phenolic composition of wines elaborated with MW treated grapes were studied and compared with a control vinification. This test was carried out using two different maceration times: 72 hours and 7 days. The MW treatment in all cases consisted of applications lasting 12 min at 700 W using a domestic oven avoiding temperature increases above 40ºC. All assays were performed in triplicate and wines were analyzed by spectrophotometry and high-performance liquid chromatography at the time of bottling.The results obtained showed an increase in the content of phenolic compounds and color intensity (CI) in the wines obtained from grapes treated with microwaves respect to their controls for both maceration times (12% and 15% increase in CI, respectively). No significant differences were observed for none of the chromatic parameters studied between the wine obtained after a MW treatment and macerated for 72 hours and the control wine with a four-day longer maceration, being of special interest the CI and the total polyphenol index (TPI) (CI: 16.16 vs 17.18 and TPI: 45.22 vs 47.05, respectively).For this reason, this study shows the possibility of reducing the maceration time without losing quality in the wines obtained when MW are used.

References

[1] Muñoz García, R.; Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Coello, M.S. (2021). Foods, 10, 1164.
[2] Carew, A.L.; Gill,W.; Close, D.C.; Dambergs, R.G. (2014). Am. J. Enol. Vitic., 65, 401–406.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Munoz-García Raquel2, Díaz-Maroto Mª Consuelo2, Pérez-Coello Mª Soledad2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia.
2Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Contact the author

Keywords

Microwave, Chromatics, Polyphenols, Maceration, Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.

Consumers’ emotional responses elicited by wines according to organoleptic quality

Wine is often described with emotional terms, such as surprising, disappointing or pleasant. However, very little has been done to really characterize this link between emotions and wine. Can it really bring emotions to wine tasters? Many studies have looked at the extrinsic factors that can improve the emotional

Influence of the agronomic management on the aroma of Riesling wines

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.