IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

Abstract

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation. The MW cause the migration of ions and dipoles generate frictional forces increasing the temperature. This thermal energy can break bonds between compounds, being able to favor the breakage of the cell wall of the grape skin. This would favor the extraction of compounds of interest, allowing wineries to reduce maceration time and increasing their production capacity. In this context, our work focuses on studying the capacity of MW to favor the extraction of phenolic compounds from red grapes of the Cabernet Sauvignon variety in order to obtain wines of high color quality with short maceration times.For this, the chromatic parameters and phenolic composition of wines elaborated with MW treated grapes were studied and compared with a control vinification. This test was carried out using two different maceration times: 72 hours and 7 days. The MW treatment in all cases consisted of applications lasting 12 min at 700 W using a domestic oven avoiding temperature increases above 40ºC. All assays were performed in triplicate and wines were analyzed by spectrophotometry and high-performance liquid chromatography at the time of bottling.The results obtained showed an increase in the content of phenolic compounds and color intensity (CI) in the wines obtained from grapes treated with microwaves respect to their controls for both maceration times (12% and 15% increase in CI, respectively). No significant differences were observed for none of the chromatic parameters studied between the wine obtained after a MW treatment and macerated for 72 hours and the control wine with a four-day longer maceration, being of special interest the CI and the total polyphenol index (TPI) (CI: 16.16 vs 17.18 and TPI: 45.22 vs 47.05, respectively).For this reason, this study shows the possibility of reducing the maceration time without losing quality in the wines obtained when MW are used.

References

[1] Muñoz García, R.; Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Coello, M.S. (2021). Foods, 10, 1164.
[2] Carew, A.L.; Gill,W.; Close, D.C.; Dambergs, R.G. (2014). Am. J. Enol. Vitic., 65, 401–406.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Munoz-García Raquel2, Díaz-Maroto Mª Consuelo2, Pérez-Coello Mª Soledad2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia.
2Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Contact the author

Keywords

Microwave, Chromatics, Polyphenols, Maceration, Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Kimmeridgian age in Chablis: a geological argument for the social building of a terroir

Situated at the beginning of the 20th century on the territory of the Chablis municipality, delimited according to specialists of the time to plots of “kimmeridgian” origin, the vineyard producing Chablis

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.