IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

Abstract

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition. Seven vineyards planted on dry, (hiper) skeletal Eutric Cambisol terrace slopes in a relatively limited area with similar mesoclimate were studied. The vines are planted in two rows: the inner rows, which are close to the slope and where the soil is more compact, are expected to have less available water, while the vines in the outer rows are more likely not to experience drought. Vineyard parameters (e.g., crop size, leaf area to yield ratio) were standardised in all selected vineyards as described by Sivilotti et al. (2020), and stem water potential (SWP) was measured during the growing season (Deloire and Heyns, 2011). Berry samples were randomly collected in triplicate from the inner and outer rows of the terraces at harvest time in 2019 and 2020. The skins and seeds were separated and extracted by accelerated extraction in organic solvents. The content of total anthocyanins (TA), free anthocyanins, total phenols (TP), proanthocyanidins (PAs), catechins and PAs reactive with vanillin (vanillin index) in grape skins and seeds was determined spectrophotometrically (Rigo et al., 2000). The structural characteristics of PAs (mean degree of polymerization (mDP), percent galloylation (%G), and percent prodelphinidins (%P)) in seeds and skins were analysed by UHPLC-DAD-MS /MS (Calderan et al., 2021). The profile of free anthocyanins in the skins was determined using HPLC-DAD (Vanzo et al., 2008). In early July 2019 at pre-verasion, statistically significant higher levels of SWP were measured on vines growing in the inner rows, while in late July and August, higher water deficit was measured in the outer rows of the terraces. The water deficit in early July 2019 was most likely related to the lower leaf area and yield in the inner rows. Grape seeds from inner rows contained more TP, vanillin reactive PAs, and PAs in dry weight and PAs had higher % G. Grape skins from inner rows contained more PAs in dry weight. On the other hand, grape skins from outer rows contained more TP, TA and more anthocyanidin 3-glucosides in fresh weight. In 2020 there was significantly higher SWP in late August and yield in the outer rows, and no differences in grape composition. The results indicated that the position of the vines on the terraces could influence the grape phenolic content and PAs structural characteristics. In this study, we confirmed differences in phenolic composition of Merlot grapes at the microscale within the vineyard, where the water deficit of the vines could have an important effect. Differences between row position of the vines suggest that it would be possible to improve the mechanical work with an excavator when establish new terraces in order to reduce water deficit of vines.

References

Calderan A., Sivilotti P., Braidotti R., Mihelčič A., Lisjak K., Vanzo A. 2021. Managing moderate water deficit increased anthocyanin concentration and proanthocyanidins galloylation in “Refošk” grapes in Northeast Italy. Agricultural water management, 246: 106684
Deloire A., Heyns D. 2011. The leaf potentials: Principles, method and thresholds. WineLand: 129-131
Rigo A., Vianello F., Clementi G., Rossetto M., Scarpa M., Vrhovšek U., Mattivi F. 2000. Contribution of proanthocyanidins to the peroxy radical scavenging capacity of some Italian red wines. Journal of agricultural and food chemistry, 48: 1996-2002
Sivilotti P., Falchi R., Vanderweide J., Sabbatini P., Bubola M., Vanzo A., Lisjak K., Peterlunger E., Herrera J. C. 2020. Yield reduction through cluster or selective berry thinning similarly modulates anhtocyanins and proanthocyanidins composition in Refosco dal peduncolo rosso (Vitis vinifera L.) grapes. Scientia Horticultura, 264: 1-9
Vanzo A., Terdoslavich M., Brandoni A., Torres A. M., Vrhovšek U., Passamonti S. 2008. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Molecular nutrition and food research, 52: 1106-1116

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mihelčič Alenka¹, Vanzo Andreja¹, Vrscaj Borut¹, Sivilotti Paolo² and Lisjak Klemen¹

1Agricultural Institute of Slovenia
2University of Udine

Contact the author

Keywords

Terraces, vine row position, stem water potential, grapes skin and seeds, polyphenols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.