WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bioprotection and oenological tannins association to protect Rosé wine color

Bioprotection and oenological tannins association to protect Rosé wine color

Abstract

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

A combination of antimicrobial activity through bioprotection (inoculation of a Metschnikowia pulcherrima strain on grapes) and the antioxidant properties of low amounts of sulfites or enological tannins have been tested in order to replace or diminish SO2 addition in rosé winemaking (grape variety Pinot Noir) at pre-fermentative steps. This experiment was carried out under cellar condition. Two enological tannins were tested: quebracho tannins belonging to the condensed tannins family and gall nuts tannins belonging to the hydrolysable gallotannins family. Results showed that combination of bioprotection with enological tannins protected rosé wine color similarly as the combination with SO2, which was not the case with bioprotection alone. The color differences observed cannot be explained neither by anthocyanins concentration, nor by phenolic composition of wines. Quebracho tannins seemed more efficient than gall nuts tannins to protect the color of bioprotected rosé wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maelys Puyo, Scott Simonin, Géraldine Klein, Jordi Ballester, Natalia Quijada-Morin, Hervé Alexandre, Raphaëlle Tourdot-Marechal

Presenting author

Maelys Puyo – UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France

UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France | Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRAUniversité de Bourgogne Franche Comté, 9 E Boulevard Jeanne d’Arc, F-21000 Dijon, France

Contact the author

Keywords

Bioprotection – Color – Rosé wine – Enological tannins

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Identification of aroma markers in amarone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. The analysis of 17 Amarone commercial wines from the same vintage (2015) was carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task.RESULTS: 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis/trans-whisky lactone. In certain samples, high OAVs were also observed for 4-ethyl phenol and 1,8-cineole.Results from the sorting task sensory analysis showed three clusters formed.