WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bioprotection and oenological tannins association to protect Rosé wine color

Bioprotection and oenological tannins association to protect Rosé wine color

Abstract

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

A combination of antimicrobial activity through bioprotection (inoculation of a Metschnikowia pulcherrima strain on grapes) and the antioxidant properties of low amounts of sulfites or enological tannins have been tested in order to replace or diminish SO2 addition in rosé winemaking (grape variety Pinot Noir) at pre-fermentative steps. This experiment was carried out under cellar condition. Two enological tannins were tested: quebracho tannins belonging to the condensed tannins family and gall nuts tannins belonging to the hydrolysable gallotannins family. Results showed that combination of bioprotection with enological tannins protected rosé wine color similarly as the combination with SO2, which was not the case with bioprotection alone. The color differences observed cannot be explained neither by anthocyanins concentration, nor by phenolic composition of wines. Quebracho tannins seemed more efficient than gall nuts tannins to protect the color of bioprotected rosé wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maelys Puyo, Scott Simonin, Géraldine Klein, Jordi Ballester, Natalia Quijada-Morin, Hervé Alexandre, Raphaëlle Tourdot-Marechal

Presenting author

Maelys Puyo – UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France

UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France | Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRAUniversité de Bourgogne Franche Comté, 9 E Boulevard Jeanne d’Arc, F-21000 Dijon, France

Contact the author

Keywords

Bioprotection – Color – Rosé wine – Enological tannins

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

Rapid damage assessment and grapevine recovery after fire

There is increasing scientific consensus that climate changeis the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.