IVAS 2022 banner

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

Abstract

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall, they have an important role in the aromatic complexity of wines. Biogenic amines are produced during the fermentation process by microbial decarboxylation of the corresponding amino acid precursors. Yet, their fate is not only determined by the presence of microorganisms as they are also produced by the grape berries in response to abiotic factors. The presence of biogenic amines affect the sensory attributes of wines by reducing the varietal character and giving rise to meaty and metallic aromas in wines having higher pH values. Moreover, they also have a detrimental impact on consumer health. Due
to the importance of those compounds, several detection and quantification methods have been designed and published. However, to the best of our knowledge, none of them entailed the use of ultra-high performance liquid chromatography (UHPLC) coupled to a high-resolution mass spectrometry (HRMS). In this study, an innovative UHPLC-HRMS method useful for fast quantification of a broad range of amino acids and amines was developed. Twenty-five amino acids, twelve biogenic amines as well as glutathione and S-methylmethionine were identified and quantified in a single chromatographic run taking only 12 minutes. Additionally, a second run of the same length involving the use of o-phthalaldehyde derivatisation reagent was developed to quantify two more amines and ammonium. Validation of the method was performed in relation to the limit of detection, limit of quantification, linearity range, repeatability, reproducibility, and recovery. Once validated, the method was successfully tested on commercial oenological samples and grape musts, demonstrating its applicability to fast routine analysis of musts and wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone¹, Nardin Tiziana¹and Larcher Roberto

¹Edmund Mach Foundation (FEM

Contact the author

Keywords

amino acids, amines, UHPLC-HRMS, wine, must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

Effect of culture and familiarity on wine perception: a study with spanish and british wine experts

Wine perception results from the interaction between the wine and its intrinsic and extrinsic characteristics and the experience [1], background and beliefs of the consumer [2,3]. Among all of the factors affecting wine perception, in this study we focused on culture and cognitive processes, working under the hypothesis that higher familiarity with wines would induce higher perceived quality. Furthermore, we hypothesised that culture would influence the verbalisation of wine properties associated with the different experiences of consumers from different cultures.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.