IVAS 2022 banner

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

Abstract

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall, they have an important role in the aromatic complexity of wines. Biogenic amines are produced during the fermentation process by microbial decarboxylation of the corresponding amino acid precursors. Yet, their fate is not only determined by the presence of microorganisms as they are also produced by the grape berries in response to abiotic factors. The presence of biogenic amines affect the sensory attributes of wines by reducing the varietal character and giving rise to meaty and metallic aromas in wines having higher pH values. Moreover, they also have a detrimental impact on consumer health. Due
to the importance of those compounds, several detection and quantification methods have been designed and published. However, to the best of our knowledge, none of them entailed the use of ultra-high performance liquid chromatography (UHPLC) coupled to a high-resolution mass spectrometry (HRMS). In this study, an innovative UHPLC-HRMS method useful for fast quantification of a broad range of amino acids and amines was developed. Twenty-five amino acids, twelve biogenic amines as well as glutathione and S-methylmethionine were identified and quantified in a single chromatographic run taking only 12 minutes. Additionally, a second run of the same length involving the use of o-phthalaldehyde derivatisation reagent was developed to quantify two more amines and ammonium. Validation of the method was performed in relation to the limit of detection, limit of quantification, linearity range, repeatability, reproducibility, and recovery. Once validated, the method was successfully tested on commercial oenological samples and grape musts, demonstrating its applicability to fast routine analysis of musts and wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone¹, Nardin Tiziana¹and Larcher Roberto

¹Edmund Mach Foundation (FEM

Contact the author

Keywords

amino acids, amines, UHPLC-HRMS, wine, must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Guard cells and stomatal movement reveal early molecular interaction between grapevine cells and esca-associated pathogens

Esca is one of the major grapevine trunk diseases that cause vineyards decline and important economic losses in vineyards.

Advancement of grape maturity – comparison between contrasting varieties and regions

Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier
vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016).

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.