IVAS 2022 banner

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

Abstract

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall, they have an important role in the aromatic complexity of wines. Biogenic amines are produced during the fermentation process by microbial decarboxylation of the corresponding amino acid precursors. Yet, their fate is not only determined by the presence of microorganisms as they are also produced by the grape berries in response to abiotic factors. The presence of biogenic amines affect the sensory attributes of wines by reducing the varietal character and giving rise to meaty and metallic aromas in wines having higher pH values. Moreover, they also have a detrimental impact on consumer health. Due
to the importance of those compounds, several detection and quantification methods have been designed and published. However, to the best of our knowledge, none of them entailed the use of ultra-high performance liquid chromatography (UHPLC) coupled to a high-resolution mass spectrometry (HRMS). In this study, an innovative UHPLC-HRMS method useful for fast quantification of a broad range of amino acids and amines was developed. Twenty-five amino acids, twelve biogenic amines as well as glutathione and S-methylmethionine were identified and quantified in a single chromatographic run taking only 12 minutes. Additionally, a second run of the same length involving the use of o-phthalaldehyde derivatisation reagent was developed to quantify two more amines and ammonium. Validation of the method was performed in relation to the limit of detection, limit of quantification, linearity range, repeatability, reproducibility, and recovery. Once validated, the method was successfully tested on commercial oenological samples and grape musts, demonstrating its applicability to fast routine analysis of musts and wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone¹, Nardin Tiziana¹and Larcher Roberto

¹Edmund Mach Foundation (FEM

Contact the author

Keywords

amino acids, amines, UHPLC-HRMS, wine, must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of cultivar and its drought tolerance on soil microbiome

Soil microbiome plays a crucial role in plant health and resilience, particularly under abiotic stress conditions such as drought.

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.