IVAS 2022 banner

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

Abstract

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall, they have an important role in the aromatic complexity of wines. Biogenic amines are produced during the fermentation process by microbial decarboxylation of the corresponding amino acid precursors. Yet, their fate is not only determined by the presence of microorganisms as they are also produced by the grape berries in response to abiotic factors. The presence of biogenic amines affect the sensory attributes of wines by reducing the varietal character and giving rise to meaty and metallic aromas in wines having higher pH values. Moreover, they also have a detrimental impact on consumer health. Due
to the importance of those compounds, several detection and quantification methods have been designed and published. However, to the best of our knowledge, none of them entailed the use of ultra-high performance liquid chromatography (UHPLC) coupled to a high-resolution mass spectrometry (HRMS). In this study, an innovative UHPLC-HRMS method useful for fast quantification of a broad range of amino acids and amines was developed. Twenty-five amino acids, twelve biogenic amines as well as glutathione and S-methylmethionine were identified and quantified in a single chromatographic run taking only 12 minutes. Additionally, a second run of the same length involving the use of o-phthalaldehyde derivatisation reagent was developed to quantify two more amines and ammonium. Validation of the method was performed in relation to the limit of detection, limit of quantification, linearity range, repeatability, reproducibility, and recovery. Once validated, the method was successfully tested on commercial oenological samples and grape musts, demonstrating its applicability to fast routine analysis of musts and wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone¹, Nardin Tiziana¹and Larcher Roberto

¹Edmund Mach Foundation (FEM

Contact the author

Keywords

amino acids, amines, UHPLC-HRMS, wine, must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.