IVAS 2022 banner

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

Abstract

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall, they have an important role in the aromatic complexity of wines. Biogenic amines are produced during the fermentation process by microbial decarboxylation of the corresponding amino acid precursors. Yet, their fate is not only determined by the presence of microorganisms as they are also produced by the grape berries in response to abiotic factors. The presence of biogenic amines affect the sensory attributes of wines by reducing the varietal character and giving rise to meaty and metallic aromas in wines having higher pH values. Moreover, they also have a detrimental impact on consumer health. Due
to the importance of those compounds, several detection and quantification methods have been designed and published. However, to the best of our knowledge, none of them entailed the use of ultra-high performance liquid chromatography (UHPLC) coupled to a high-resolution mass spectrometry (HRMS). In this study, an innovative UHPLC-HRMS method useful for fast quantification of a broad range of amino acids and amines was developed. Twenty-five amino acids, twelve biogenic amines as well as glutathione and S-methylmethionine were identified and quantified in a single chromatographic run taking only 12 minutes. Additionally, a second run of the same length involving the use of o-phthalaldehyde derivatisation reagent was developed to quantify two more amines and ammonium. Validation of the method was performed in relation to the limit of detection, limit of quantification, linearity range, repeatability, reproducibility, and recovery. Once validated, the method was successfully tested on commercial oenological samples and grape musts, demonstrating its applicability to fast routine analysis of musts and wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delaiti Simone¹, Nardin Tiziana¹and Larcher Roberto

¹Edmund Mach Foundation (FEM

Contact the author

Keywords

amino acids, amines, UHPLC-HRMS, wine, must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Des enjeux individuels à l’action collective

With the Federation of Wine Syndicates of Anjou and the Wine Syndicate of Angevin for direct sale to the Property, the Higher School of Agriculture of Angers was led to carry out, in 1995, a survey of winegrowers in Maine and Loire, with a view to grouping the supply of some of the wines intended for direct sale (Huet, 1995).

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,