IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A first look at the aromatic profile of “Monferace” wines

A first look at the aromatic profile of “Monferace” wines

Abstract

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1). Numerous documents trace its cultivation back to the early Middle Age. Until the mid-1900s Grignolino was considered a fine wine valued as much as Barolo and Barbaresco for its quality, finesse, and unique characteristics (2). Today the young and “easy” version of this wine is the best known and appreciated for a pale ruby red color with tints that rapidly tend to orange, high acidity, with distinct tannins. However, some local wine producers, the Monferace association, in order to revive the ancient glories of Grignolino, have decided to produce an aged version of this wine. For this purpose, they have drawn up production guidelines that require at least 40 months of ageing, 24 of which in oak barrels.
In order to characterize Monferace, for the first time, from an aromatic point of view, 2012 (four years of ageing) and 2015 (two years of ageing) wines were analyzed. Their aromatic composition was evaluated using SPE-GC-MS methods and sensory analysis (3). The most important volatile compounds identified in these wines belong to the class of lactones, hydroxybenzaldehydes, phenols, short and medium chain fatty acids and their ethyl esters. Moreover, traces of some isoprenoid compounds were detected. Results highlighted a composite and rich aromatic profile, typical of wines characterized by great structure and complexity. From an olfactory point of view Monferace differs significantly from the more
widespread, and not aged, Grignolino wines. The former shows important notes of wood, boisée, floral, cherry, berries, caramel and spice, the latter is characterized by notes of violet, rose, raspberry, pepper, currant, cherry, resinous and vegetable. Statistical analysis showed a good correlation between the main olfactory descriptors identified in the wines and key aroma compounds measured in the same samples.

References

1) UNESCO World Heritage Centre. Vineyard Landscape of Piedmont: Langhe-Roero and Monferrato. Available at https://whc.unesco.org/en/list/1390/
2) Desana, P. Barbesino and Grignolino wines in the grape-wine history of Monferrato. Studying 12th century documents. 1980, Vignevini. 7(12) p. 15-17.
3) Petrozziello, M., Bonello, F., Asproudi, A., Nardi, T., Tsolakis, C., Bosso, A., Martino, V. D., Fugaro, M., & Mazzei, R. A. (2020). Differences in xylovolatiles composition between chips or barrel aged wines: OENO One, 54(3), 513–522. https://doi.org/10.20870/oeno-one.2020.54.3.2923

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Petrozziello Maurizio1, Asproudi Andriani1, Bonello Frederica1, Cravero Maria Carla1, Gianotti Silvia2 and Ronco Mario2

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace, Castello di Ponzano Monferrato

Contact the author

Keywords

Grignolino, wood ageing, aromatic compounds, GC-MS, sensory analysis.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

Thermal risk assessment for viticulture using monthly temperature data

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary.

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.